Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 172893, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692321

RESUMO

Being a crucial element for technological development, praseodymium (Pr) has been increasingly used, leading to a rise in its concentration in aquatic systems. However, its potential threats to organisms remain poorly understood. Besides contamination, organisms are also threatened by climate change-related factors, including warming. It is important to evaluate how climate change-related factors may influence the effects of contaminants. To address this, histopathological and biochemical analyses were performed in adult mussels of Mytilus galloprovincialis, following a 28-day exposure to Pr (10 µg/L) and warming (4 °C increase) separately, and in combination. Additionally, biochemical and physiological alterations were analysed in the sperm of mussels after 30-min exposure to the same treatments. Furthermore, it was used the Independent Action model to predict the interaction between Pr and warming. The results showed, in the case of adults exposed to Pr, an increase in superoxide dismutase (SOD) and glutathione S-transferases (GSTs) activities. However, it was insufficient, leading to histopathological injuries, redox imbalance, and cellular damage. In the case of sperm, Pr induced an increase of mitochondrial activity and respiration rate, in response to the increase in systemic metabolic rate and oxygen demand. Warming increased the metabolism, and induced redox imbalance and cellular damage in adults. In sperm, a rise in temperature induced lipid peroxidation and a decrease in velocity. Warming induced some alterations in how adult mussels responded to Pr, activating catalase instead of SOD, and in addition to GSTs, also activated carboxylesterases. However, it was not enough to avoid redox imbalance and cellular damage. In the case of sperm, the combination induced a decrease in H2O2 production, and higher oxygen demand, which prevented the decrease in motility and velocity. This study highlights the limitations of using models and emphasizes the importance of studying the impacts of emerging contaminants, such as rare earth elements, and their combination with climate change-related factors. Under environmental conditions, chronic exposure to the combined effect of different stressors might generate impacts at higher biological levels. This may affect organisms' respiratory and filtration capacity, nutrient absorption, defence capacity against infections or diseases, and sperm viability, ultimately resulting in reduced growth and reproduction, with consequences at the population level.


Assuntos
Mudança Climática , Mytilus , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Mytilus/fisiologia , Masculino , Espermatozoides/fisiologia , Temperatura Alta/efeitos adversos , Superóxido Dismutase/metabolismo , Glutationa Transferase/metabolismo
2.
J Environ Manage ; 358: 120854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640759

RESUMO

The use of rare earth elements (REEs) has been increasing and one of the most used is neodymium (Nd). Being an emergent contaminant, its negative impacts are poorly understood. Aquatic organisms are also threatened by climate change-related factors, as is the case of warming, which can change the effects of REEs. Thus, the impacts of Nd, warming, and the combination of both stressors were studied in adult mussels and sperm of the species Mytilus galloprovincialis, after an exposure period of 28 days (adults) and 30 min (sperm). The effects were evaluated through the analysis of biochemical and histopathological alterations in adults and biochemical and physiological responses given by sperm. The results showed that mussels only activated their biotransformation capacity when exposed to the stressors acting alone, which was insufficient to avoid lipid peroxidation. Furthermore, warming (alone and combined with Nd) also produces damage to proteins. The digestive gland was the most sensitive organ to Nd, presenting several histopathological alterations. In the case of sperm, all stressors induced lipid peroxidation, a higher oxygen demand, and a decrease in velocity, even if the sperm viability was maintained. It seems that warming influenced the effects of Nd to some extent. The present findings contribute significantly to the field of REEs environmental toxicology by offering valuable insights into the impacts of Nd on various biological levels of mussels. Additionally, within the context of climate change, this study sheds light on how temperature influences the effects of Nd. The obtained results indicate that both stressors can potentially compromise the overall health of mussel populations, thereby affecting other species reliant on them for food and habitat. Moreover, this study highlights impaired sperm health, which could adversely affect their reproductive capacity and ultimately lead to population decline.


Assuntos
Mytilus , Neodímio , Espermatozoides , Animais , Mytilus/fisiologia , Masculino , Peroxidação de Lipídeos , Mudança Climática , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 929: 172586, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657802

RESUMO

In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.


Assuntos
Paracentrotus , Poliésteres , Poluentes Químicos da Água , Animais , Paracentrotus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Plásticos Biodegradáveis , Embrião não Mamífero/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Polímeros
4.
Sci Total Environ ; 915: 169754, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163599

RESUMO

The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 µg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 µg/L) and glutathione reductase (at 80 µg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 µg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Estresse Oxidativo , Biotransformação , Európio , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo
5.
Sci Total Environ ; 912: 169190, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092204

RESUMO

The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Alcaloides/toxicidade , Alcaloides/metabolismo , Cafeína/toxicidade , Cafeína/metabolismo , Indóis/metabolismo , Indóis/toxicidade , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
6.
Animals (Basel) ; 13(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003196

RESUMO

A wide variety of substances have been used to anaesthetise invertebrates, but many are not anaesthetics and merely incapacitate animals rather than preventing pain. In essence, the role of an ideal general anaesthetic is to act as a muscle relaxant, an analgesic, an anaesthetic, and an amnesic. To achieve all these properties with a single substance is difficult, and various adjuvants usually need to be administered, resulting in a cocktail of drugs. In a clinical setting, the vast majority of patients are unaware of surgery being carried out and have no memory of it, so they can claim to have felt no pain, but this is much more difficult to demonstrate in invertebrates. Here, we show that 1% MgCl2, a muscle relaxant, is a useful adjuvant for the clinical anaesthetic isoflurane on Octopus vulgaris when applied alone in seawater for 10 min before the clinical anaesthetic. After this, full anaesthesia can be achieved in 5 min using 1% isoflurane insufflated into the saline still containing MgCl2. Full recovery takes place rapidly in about 10 to 15 min. The depth of anaesthesia was monitored using changes in respiratory rate, chromatophore pattern, and withdrawal movements of the arms and siphon. This methodology reduces stress on the animal and minimises the quantity of anaesthetic used.

7.
Sci Total Environ ; 902: 166085, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549702

RESUMO

Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 µg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.


Assuntos
Resíduo Eletrônico , Mytilus , Poluentes Químicos da Água , Masculino , Humanos , Animais , Temperatura , Estresse Oxidativo , Poluentes Químicos da Água/análise , Sêmen , Espermatozoides
8.
Front Physiol ; 14: 1161852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288438

RESUMO

A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.

9.
Sci Total Environ ; 892: 164476, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257616

RESUMO

Bioactive natural products from marine invasive species may dramatically impact native communities, while many synthetic pharmaceutical drugs are released into the marine environment and have long-lasting harmful effects on aquatic life. Sometimes, metabolites from alien species and synthetic compounds share similar mechanisms of action, suggesting comparable ecotoxicological impacts. This applies to the alkaloid caulerpin (CAU) from the green algae Caulerpa cylindracea, highly invasive in the Mediterranean Sea, and to the synthetic lipid-lowering drug fenofibrate (FFB), both acting as agonists of peroxisome proliferator-activated receptors (PPARs). Analogies with FFB, which is widely considered hazardous to the aquatic environment, have led to concerns about the ecotoxicological potential of CAU. The problem has implications for public health as CAU is well known to enter the food web accumulating in fish of commercial importance. Here, we compared the effects of FFB and CAU through biochemical and histopathological analysis on a relevant bioindicator molluscan species, the mussel Mytilus galloprovincialis. Under laboratory conditions, mussels were fed with food enriched with CAU or FFB. After treatment, biochemical markers were analyzed revealing metabolic capacity impairments, cellular damage, and changes in acetylcholinesterase activity in mussels fed with FFB-enriched food. NMR-based metabolomic studies also showed significant alterations in the metabolic profiles of FFB-treated mussels. In addition, dietary administration of FFB produced morphological alterations in the mussels' gills and digestive tubules. Obtained results confirm that FFB is harmful to aquatic life and that its release into the environment should be avoided. Conversely, dietary treatment with CAU did not produce any significant alterations in the mussels. Overall, our results pave the way for the possible valorization of the huge biomass from one of the world's worst invasive species to obtain CAU, a natural product of interest in drug discovery.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Mytilus edulis/metabolismo , Espécies Introduzidas , Acetilcolinesterase/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
10.
Environ Toxicol Pharmacol ; 97: 104029, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36455836

RESUMO

Climate change-associated factors and pollutants, such as rare earth elements (REEs), have been identified as contributors to environmental changes. However, the toxicity resulting from the combination of these stressors has received little attention. Neodymium (Nd) is a REE that has been widely used, and this study aimed to evaluate the responses of Mytilus galloprovincialis to Nd exposure (10 µg/L), under actual (17 °C) and predicted warming conditions (21 °C), after fourteen days of exposure followed by fourteen days of recovery (without Nd), analyzing Nd accumulation, histopathological and biochemical alterations. The results showed that increased temperature and Nd exposure caused histopathological injuries in the gills. Contaminated mussels at 17 °C showed cellular damage, while at 21 °C, mussels were able to avoid cellular damage. After the recovery period, no improvements in gill's status were found and cellular damage was still present, highlighting the impacts caused by previous exposure to Nd.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Neodímio/toxicidade , Estresse Oxidativo , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
11.
Sci Adv ; 8(47): eadd9938, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427315

RESUMO

Soft-bodied cephalopods such as octopuses are exceptionally intelligent invertebrates with a highly complex nervous system that evolved independently from vertebrates. Because of elevated RNA editing in their nervous tissues, we hypothesized that RNA regulation may play a major role in the cognitive success of this group. We thus profiled messenger RNAs and small RNAs in three cephalopod species including 18 tissues of the Octopus vulgaris. We show that the major RNA innovation of soft-bodied cephalopods is an expansion of the microRNA (miRNA) gene repertoire. These evolutionarily novel miRNAs were primarily expressed in adult neuronal tissues and during the development and had conserved and thus likely functional target sites. The only comparable miRNA expansions happened, notably, in vertebrates. Thus, we propose that miRNAs are intimately linked to the evolution of complex animal brains.


Assuntos
MicroRNAs , Octopodiformes , Animais , Octopodiformes/genética , MicroRNAs/genética , Encéfalo , Alimentos Marinhos , RNA Mensageiro
12.
Mar Drugs ; 20(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005516

RESUMO

The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus-pituitary-gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition.


Assuntos
Alcaloides , Caulerpa , Dourada , Alga Marinha , Animais , Humanos , Mar Mediterrâneo
13.
Environ Sci Pollut Res Int ; 29(22): 32967-32987, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35022978

RESUMO

Mercury (Hg) is one of the most hazardous pollutants, due to its toxicity, biological magnification and worldwide persistence in aquatic systems. Thus, new efficient nanotechnologies (e.g. graphene oxide functionalized with polyethyleneimine (GO-PEI)) have been developed to remove this metal from the water. Aquatic environments, in particular transitional systems, are also subjected to disturbances resulting from climate change, such as salinity shifts. Salinity is one of the most relevant factors that influences the distribution and survival of aquatic species such as mussels. To our knowledge, no studies assessed the ecotoxicological impairments induced in marine organisms exposed to remediate seawater (RSW) under different salinity levels. For this, the focus of the present study was to evaluate the effects of seawater previously contaminated with Hg and remediated with GO-PEI, using the species Mytilus galloprovincialis, maintained at three different salinities (30, 20 and 40). The results obtained demonstrated similar histopathological and metabolic alterations, oxidative stress and neurotoxicity in mussels under RSW treatment at stressful salinity conditions (20 and 40) in comparison to control salinity (30). On the other hand, the present findings revealed toxicological effects including cellular damage and histopathological impairments in mussels exposed to Hg contaminated seawater in comparison to non-contaminated ones, at each salinity level. Overall, these results confirm the high efficiency of GO-PEI to sorb Hg from water with no noticeable toxic effects even under different salinities, leading to consider it a promising eco-friendly approach to remediate contaminated water.


Assuntos
Mercúrio , Mytilus , Poluentes Químicos da Água , Animais , Mercúrio/metabolismo , Mytilus/metabolismo , Salinidade , Água do Mar , Água/metabolismo , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 426: 128058, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971986

RESUMO

Mixture of contaminants often determine biological responses of marine species, making difficult the interpretation of toxicological data. The pharmaceutical 17 alpha-ethinylestradiol (EE2) and the surfactant Sodium Lauryl Sulfate (SLS) commonly co-occur in the marine environment. This study evaluated the effects of EE2 (125.0 ng/L) and SLS (4 mg/L), acting individually and combined, in the mussel Mytilus galloprovincialis. Contaminated mussels closed their valves for longer periods than control ones, especially in the presence of both contaminants, with longer closure periods immediately after spiking compared to values obtained one day after spiking. Nevertheless, males and females increased their metabolism when in the presence of both contaminants (males) and SLS (females), and independently on the treatment males and females were able to activate their antioxidant and biotransformation defences. Although enhancing defences mussels still presented cellular damage and loss of redox balance, especially noticed in the presence of EE2 for males and SLS for females. Histopathological damage was found at mussel's gills in single and mixture exposure, and qPCR analysis revealed a clear estrogen receptor expression with no additive effect due to combined stressors. The results obtained highlight the harmful capacity of both contaminants but further research on this matter is needed, namely considering different climate change scenarios.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Feminino , Expressão Gênica , Masculino , Mytilus/genética , Mytilus/metabolismo , Estresse Oxidativo , Dodecilsulfato de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Environ Res ; 204(Pt C): 112279, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34699762

RESUMO

Pharmaceutical drugs are Contaminants of Emerging Concern (CECs) and are continuously discharged into the environment. As a result of human and veterinary use, these substances are reaching aquatic coastal systems, with limited information regarding the toxic effects of these compounds towards inhabiting organisms. Among CECs are pharmaceuticals like 17 α-ethinylestradiol (EE2), which is a synthetic hormone with high estrogenic potency. EE2 has been increasingly found in different aquatic systems but few studies addressed its potential toxicity to marine wildlife, in particular to bivalves. Therefore, the aim of the present study was to evaluate the influence of temperature (17 °C-control and 21 °C) on the potential effects of EE2 on the mussel Mytilus galloprovincialis. For this purpose, mussels were exposed to different concentrations of EE2 (5.0; 25.0; 125.0 and 625 ng/L), resembling low to highly polluted sites. Mussels exposed to each concentration were maintained under two temperatures, 17 and 21 °C, which represent actual and predicted warming conditions, respectively. After 28 days, oxidative stress status, metabolism related parameters, neurotoxicity and histopathological alterations were measured. The results obtained clearly showed an interactive effect of increased temperature and EE2, with limited antioxidant and biotransformation capacity when both stressors were acting together, leading to higher cellular damage. The combination of both stressors also enhanced mussels' metabolic capacity and neurotoxic effects. Nevertheless, loss of redox balance was confirmed by the strong decrease of the ratio between reduce glutathione (GSH) and oxidized glutathione (GSSG) in contaminated mussels, regardless the temperature. Histopathological indexes in contaminated mussels were significantly different from the control group, indicating impacts in gills and digestive glands of mussels due to EE2, with higher values observed at 21 °C. Overall, this study demonstrates that of EE2 represents a threat to mussels and predicted warming conditions will enhance the impacts, which in a near future might result in impairments at the population and community levels.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Etinilestradiol/metabolismo , Etinilestradiol/toxicidade , Humanos , Estresse Oxidativo , Temperatura , Poluentes Químicos da Água/análise
16.
Biology (Basel) ; 10(9)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34571813

RESUMO

In their foraging behavior octopuses rely on arm search movements outside the visual field of the eyes. In these movements the environment is explored primarily by the suckers that line the entire length of the octopus arm. In this study, for the first time, we report the complete characterization of a light-sensing molecule, Ov-GRK1, in the suckers, skin and retina of Octopus vulgaris. We sequenced the O. vulgaris GRK1 gene, defining a phylogenetic tree and performing a 3D structure model prediction. Furthermore, we found differences in relative mRNA expression in different sucker types at several arm levels, and localized it through in situ hybridization. Our findings suggest that the suckers in octopus arms are much more multimodal than was previously shown, adding the potential for light sensing to the already known mechanical and chemical sensing abilities.

17.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34443810

RESUMO

Mercury (Hg) has been increasing in waters, sediments, soils and air, as a result of natural events and anthropogenic activities. In aquatic environments, especially marine systems (estuaries and lagoons), Hg is easily bioavailable and accumulated by aquatic wildlife, namely bivalves, due to their lifestyle characteristics (sedentary and filter-feeding behavior). In recent years, different approaches have been developed with the objective of removing metal(loid)s from the water, including the employment of nanomaterials. However, coastal systems and marine organisms are not exclusively challenged by pollutants but also by climate changes such as progressive temperature increment. Therefore, the present study aimed to (i) evaluate the toxicity of remediated seawater, previously contaminated by Hg (50 mg/L) and decontaminated by the use of graphene-based nanomaterials (graphene oxide (GO) functionalized with polyethyleneimine, 10 mg/L), towards the mussel Mytilus galloprovincialis; (ii) assess the influence of temperature on the toxicity of decontaminated seawater. For this, alterations observed in mussels' metabolic capacity, oxidative and neurotoxic status, as well as histopathological injuries in gills and digestive tubules were measured. This study demonstrated that mussels exposed to Hg contaminated seawater presented higher impacts than organisms under remediated seawater. When comparing the impacts at 21 °C (present study) and 17 °C (previously published data), organisms exposed to remediated seawater at a higher temperature presented higher injuries than organisms at 17 °C. These results indicate that predicted warming conditions may negatively affect effective remediation processes, with the increasing of temperature being responsible for changes in organisms' sensitivity to pollutants or increasing pollutants toxicity.

18.
Chemosphere ; 277: 130160, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33794434

RESUMO

Advanced investigations on the use of graphene based nanomaterials have highlighted the capacity of these materials for wastewater treatment. Research on this topic revealed the efficiency of the nanocomposite synthetized by graphene oxide functionalized with polyethyleneimine (GO-PEI) to adsorb mercury (Hg) from contaminated seawater. However, information on the environmental risks associated with these approaches are still lacking. The focus of this study was to evaluate the effects of Hg in contaminated seawater and seawater remediated by GO-PEI, using the species Ruditapes philippinarum, maintained at two different warming scenarios: control (17 °C) and increased (22 °C) temperatures. The results obtained showed that organisms exposed to non-contaminated and remediated seawaters at control temperature presented similar biological patterns, with no considerable differences expressed in terms of biochemical and histopathological alterations. Moreover, the present findings revealed increased toxicological effects in clams under remediated seawater at 22 °C in comparison to those subjected to the equivalent treatment at 17 °C. These results confirm the capability of GO-PEI to adsorb Hg from water with no noticeable toxic effects, although temperature could alter the responses of mussels to remediated seawater. These materials seem to be a promise eco-friendly approach to remediate wastewater, with low toxicity evidenced by remediated seawater and high regenerative capacity of this nanomaterial, keeping its high removal performance after successive sorption-desorption cycles.


Assuntos
Bivalves , Grafite , Mercúrio , Nanocompostos , Poluentes Químicos da Água , Animais , Grafite/toxicidade , Laboratórios , Mercúrio/toxicidade , Nanocompostos/toxicidade , Água do Mar , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Chemosphere ; 271: 129775, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736227

RESUMO

In the marine environment, organisms are exposed to a high and increasing number of different contaminants that can interact among them. In addition, abiotic factors can change the dynamics between contaminants and organisms, thus increasing or even decreasing the toxic effect of a particular compound. In this study, the effects of caffeine (CAF) and functionalized multi-walled carbon nanotubes (f-MWCNTs) induced in the clam Ruditapes philippinarum were evaluated, acting alone and in combination (MIX), under two temperature levels (18 and 21 °C). To assess the impact of such compounds, their interaction and the possible influence of temperature, biochemical and histopathological markers were investigated. The effects of f-MWCNTs and caffeine appear to be clearly negative at the control temperature, with lower protein content in contaminated clams and a significant decrease in their metabolism when both pollutants were acting in combination. Also, at control temperature, clams exposed to pollutants showed increased antioxidant capacity, especially when caffeine was acting alone, although cellular damages were still observed at CAF and f-MWCNTs treatments. Increased biotransformation capacity at 18 °C and MIX treatment may explain lower caffeine concentration observed. At increased temperature differences among treatments were not so evident as at 18 °C, with a similar biological pattern among contaminated and control clams. Higher caffeine accumulation at MIX treatment under warming conditions may result from clams' inefficient biotransformation capacity when exposed to increased temperatures.


Assuntos
Bivalves , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Cafeína/toxicidade , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Temperatura , Poluentes Químicos da Água/toxicidade
20.
Environ Res ; 195: 110755, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556353

RESUMO

Nowadays, multi-walled carbon nanotubes are considered to be emerging contaminants and their impact in ecosystem has drawn special research attention, while other contaminants, such as caffeine, have more coverage in literature. Despite this, the effects of a combination of the two has yet to be evaluated, especially considering predicted temperature rise. In the present study a typical bioindicator species for marine environment, the clam Ruditapes decussatus, and classical tools, such as biomarkers and histopathological indices, were used to shed light on the species' response to these contaminants, under actual and predicted warming scenarios. The results obtained showed that both contaminants have a harmful effect at tissue level, as shown by higher histopathological index, especially in digestive tubules. Temperatures seemed to induce greater biochemical impacts than caffeine (CAF) and -COOH functionalized multi-walled carbon nanotubes (f-MWCNTs) when acting alone, namely in terms of antioxidant defences and energy reserves content, which were exacerbated when both contaminants were acting in combination (MIX treatment). Overall, the present findings highlight the complex response of clams to both pollutants, evidencing the role of temperature on clams' sensitivity, especially to mixture of pollutants.


Assuntos
Bivalves , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Cafeína/toxicidade , Ecossistema , Nanotubos de Carbono/toxicidade , Estresse Oxidativo , Temperatura , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...