Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Cells Tissues Organs ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194935

RESUMO

TEMTIA X, the tenth symposium organized by the EMT international Association (TEMTIA) took place in Paris on November 7th-10th, 2022. Similarly to the previous meetings, it reviewed most recent aspects of the epithelial-mesenchymal transition, a cellular process involved during distinct stages of development, but also during wound healing and fibrosis to some level. EMT steps are likewise typically described with various extents during tumor cell progression and metastasis. The meeting emphasized the intermediate stages involved in the process and their potential physiological or pathological importance, taking advantage of the expansion of molecular methods at single cell level. It also introduced new descriptions of EMT occurrences during early embryogenesis. In addition, sessions explored how EMT reflects cell metabolism and how the process can mingle with immune response, particularly during tumor progression, providing new targets, that were discussed, among others, for cancer therapy. Finally, it introduced a new perception of EMT biological meaning based on an evolutionary perspective. The meeting integrated the TEMTIA general assembly , allowing general discussion about the future of the association, starting with the site of the next meeting, now decided to take place in Seattle (US), late 2024.

3.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38056888

RESUMO

Cilia are organelles emanating from the cell surface, consisting of an axoneme of microtubules that extends from a basal body derived from the centrioles. They are either isolated and nonmotile (primary cilia), or grouped and motile (motile cilia). Cilia are at the centre of fundamental sensory processes and are involved in a wide range of human disorders. Pulmonary cilia include motile cilia lining the epithelial cells of the conductive airways to orchestrate mucociliary clearance, and primary cilia found on nondifferentiated epithelial and mesenchymal cells acting as sensors and cell cycle keepers. Whereas cilia are essential along the airways, their regulatory molecular mechanisms remain poorly understood, resulting in a lack of therapeutic strategies targeting their structure or functions. This review summarises the current knowledge on cilia in the context of lung homeostasis and COPD to provide a comprehensive overview of the (patho)biology of cilia in respiratory medicine with a particular emphasis on COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Depuração Mucociliar , Axonema/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Homeostase , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
Front Immunol ; 14: 1171649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283751

RESUMO

Lung cancer remains the first cause of cancer-related death despite many therapeutic innovations, including immune checkpoint inhibitors (ICI). ICI are now well used in daily practice at late metastatic stages and locally advanced stages after a chemo-radiation. ICI are also emerging in the peri-operative context. However, all patients do not benefit from ICI and even suffer from additional immune side effects. A current challenge remains to identify patients eligible for ICI and benefiting from these drugs. Currently, the prediction of ICI response is only supported by Programmed death-ligand 1 (PD-L1) tumor expression with perfectible results and limitations inherent to tumor-biopsy specimen analysis. Here, we reviewed alternative markers based on liquid biopsy and focused on the most promising biomarkers to modify clinical practice, including non-tumoral blood cell count such as absolute neutrophil counts, platelet to lymphocyte ratio, neutrophil to lymphocyte ratio, and derived neutrophil to lymphocyte ratio. We also discussed soluble-derived immune checkpoint-related products such as sPD-L1, circulating tumor cells (detection, count, and marker expression), and circulating tumor DNA-related products. Finally, we explored perspectives for liquid biopsies in the immune landscape and discussed how they could be implemented into lung cancer management with a potential biological-driven decision.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais , Linfócitos/metabolismo
5.
Life (Basel) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38255679

RESUMO

Lung cancer stands as the first cause of death by cancer in the world. Despite the improvement in patients' outcomes in the past decades through the development of personalized medicine approaches, a substantial portion of patients remains ineligible for targeted therapies due to the lack of a "druggable" molecular target. HER2, a receptor tyrosine kinase member of the EGFR/ErbB family, is known to show oncogenic properties. In this review, we focus on the different HER2 dysregulation mechanisms that have been observed in non-small cell lung cancer (NSCLC): gene mutation, gene amplification, protein overexpression and protein hyper-phosphorylation, the latter suggesting that HER2 dysregulation can occur independently of any molecular aberration. These HER2 alterations inevitably have consequences on tumor biology. Here, we discuss how they are not only involved in abnormal proliferation and survival of cancer cells but also potentially in increased angiogenic properties, mesenchymal features and tumor immune escape. Finally, we review the impact of these HER2 alterations in various therapeutic approaches. While standard chemotherapy and groundbreaking immunotherapy seem rather ineffective for HER2-altered NSCLCs, the development of HER2-targeted therapies such as tyrosine kinase inhibitors, anti-HER2 antibodies and especially antibody-drug conjugates could provide new hopes for patients.

6.
Front Immunol ; 13: 1058531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544755

RESUMO

Introduction: In recent decades, the development of immunotherapy and targeted therapies has considerably improved the outcome of non-small cell lung cancer (NSCLC) patients. Despite these impressive clinical benefits, new biomarkers are needed for an accurate stratification of NSCLC patients and a more personalized management. We recently showed that the tumor suppressor fragile histidine triad (FHIT), frequently lost in NSCLC, controls HER2 receptor activity in lung tumor cells and that tumor cells from NSCLC patients harboring a FHITlow/pHER2high phenotype are sensitive to anti-HER2 drugs. Here, we sought to identify the transcriptomic signature of this phenotype and evaluate its clinical significance. Materials and methods: We performed RNA sequencing analysis on tumor cells isolated from NSCLC (n=12) according to FHIT/pHER2 status and a functional analysis of differentially regulated genes. We also investigated the FHITlow/pHER2high signature in The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD) (n=489) and lung squamous cell carcinoma (LUSC) (n=493) cohorts and used the tumor immune dysfunction and exclusion (TIDE) model to test the ability of this signature to predict response to immune checkpoint inhibitors (ICI). Results: We showed that up-regulated genes in FHITlow/pHER2high tumors were associated with cell proliferation, metabolism and metastasis, whereas down-regulated genes were related to immune response. The FHITlow/pHER2high signature was associated with the higher size of tumors, lymph node involvement, and late TNM stages in LUAD and LUSC cohorts. It was identified as an independent predictor of overall survival (OS) in LUAD cohort. FHITlow/pHER2high tumors were also predictive of poor response to ICI in both LUAD and LUSC cohorts. Conclusion: These data suggest that ICI might not be a relevant option for NSCLC patients with FHITlow/pHER2high tumors and that anti-HER2 targeted therapy could be a good therapeutic alternative for this molecular subclass with poorer prognosis.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transcriptoma , Adenocarcinoma de Pulmão/genética , Carcinoma de Células Escamosas/genética , Imunoterapia
8.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230899

RESUMO

Genome-wide association studies unveiled the associations between the single nucleotide polymorphism rs16969968 of CHRNA5, encoding the nicotinic acetylcholine receptor alpha5 subunit (α5SNP), and nicotine addiction, cancer, and COPD independently. Here, we investigated α5SNP-induced epithelial remodeling and inflammatory response in human COPD airways. We included 26 α5SNP COPD patients and 18 wild-type α5 COPD patients in a multi-modal study. A comparative histologic analysis was performed on formalin-fixed paraffin-embedded lung tissues. Isolated airway epithelial cells from bronchial brushings were cultivated in the air-liquid interface. Broncho-alveolar fluids were collected to detect inflammatory mediators. Ciliogenesis was altered in α5SNP COPD bronchial and bronchiolar epithelia. Goblet cell hyperplasia was exacerbated in α5SNP small airways. The broncho-alveolar fluids of α5SNP COPD patients exhibited an increase in inflammatory mediators. The involvement of the rs16969968 polymorphism in airway epithelial remodeling and related inflammatory response in COPD prompts the development of innovative personalized diagnostic and therapeutic strategies.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Receptores Nicotínicos/genética , Remodelação das Vias Aéreas/genética , Formaldeído , Estudo de Associação Genômica Ampla , Humanos , Mediadores da Inflamação , Doença Pulmonar Obstrutiva Crônica/genética
9.
Biomedicines ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885019

RESUMO

The remodelling of the airways is a hallmark of chronic obstructive pulmonary disease, but it is highly heterogeneous and erratically distributed in the airways. To assess the genetic print of remodelling in chronic obstructive pulmonary disease (COPD), we performed a comparative whole-exome sequencing analysis on microdissected bronchial epithelia. Lung resections from four non-COPD and three COPD subjects (ex-smokers and current smokers) were formalin-fixed paraffin-embedded (FFPE). Non-remodelled and remodelled bronchial epithelia were isolated by laser microdissection. Genomic DNA was captured and sequenced. The comparative quantitative analysis identified a list of 109 genes as having variants in remodelled epithelia and 160 genes as having copy number alterations in remodelled epithelia, mainly in COPD patients. The functional analysis highlighted cilia-associated processes. Therefore, bronchial-remodelled epithelia appeared genetically more altered than non-remodelled epithelia. Characterizing the unique molecular print of airway remodelling in respiratory diseases may help uncover additional factors contributing to epithelial dysfunctions, ultimately providing additional targetable proteins to correct epithelial remodelling and improve lung function.

10.
Cancers (Basel) ; 14(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35805061

RESUMO

Previous work identified Tissue Factor (TF), a key activator of the coagulation cascade, as a gene induced in cellular contexts of Epithelial-Mesenchymal Transitions (EMTs), providing EMT+ Circulating Tumor Cells (CTCs) with coagulant properties that facilitate their metastatic seeding. Deciphering further molecular aspects of TF regulation in tumor cells, we report here that CD44 and TF coexpress in EMT contexts, and that CD44 acts as a regulator of TF expression supporting procoagulant properties and metastatic seeding. A transcriptional regulatory mechanism bridging CD44 to TF expression was further evidenced. Comparing different TF -promoter luciferase reporter constructs, we indeed found that the shortest -111 pb TF promoter fragment harboring three Specificity Protein 1 (Sp1) binding sites is still responsive to CD44 silencing. The observation that (i) mutation within Sp1 binding sites decreased the basal activity of the -111 pb TF promoter construct, (ii) CD44 silencing decreased Sp1 protein and mRNA levels and (iii) Sp1 silencing diminished TF expression further points to Sp1 as a key mediator linking CD44 to TF regulation. All together, these data thus report a transcriptional regulatory mechanism of TF expression by CD44 supporting procoagulant activity and metastatic competence of CTCs.

11.
Biomolecules ; 12(5)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625586

RESUMO

Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA's deleterious effects in the lungs are discussed.


Assuntos
Receptores de Hialuronatos , Imunidade Inata , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Pulmão/metabolismo , Peso Molecular
12.
Cells Tissues Organs ; 211(2): 91-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32750701

RESUMO

Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
13.
Med Hypotheses ; 158: 110741, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34924680

RESUMO

Nicotinic acetylcholine receptors (nAChRs) play an important role in homeostasis and respiratory diseases. Controversies regarding the association between COVID-19 hospitalizations and smoking suggest that nAChRs may contribute to SARS-CoV-2 respiratory syndrome. We recently detailed the expression and localization of all nAChR subunits in the human lung. Since virus association with nAChRs has been shown in the past, we hypothesize that nAChR subunits act as SARS-CoV-2 Spike co-receptors. Based on sequence alignment analysis, we report domains of high molecular similarities in nAChRs with the binding domain of hACE2 for SARS-CoV-2 Spike protein. This hypothesis supported by in silico pilot data provides a rational for the modelling and the in vitro experimental validation of the interaction between SARS-CoV-2 and the nAChRs.


Assuntos
Receptores Nicotínicos , Receptores Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19 , Humanos
14.
Front Cell Dev Biol ; 9: 749364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938731

RESUMO

Delocalization of zonula occludens-1 (ZO-1) from tight junctions plays a substantial role in epithelial cell plasticity observed during tumor progression. In vitro, we reported an impact of ZO-1 cyto-nuclear content in modulating the secretion of several pro-inflammatory chemokines. In vivo, we demonstrated that it promotes the recruitment of immune cells in mouse ear sponge assays. Examining lung cancers, we showed that a high density of CD8 cytotoxic T cells and Foxp3 immunosuppressive regulatory T cells in the tumor microenvironment correlated with a cyto-nuclear expression of ZO-1. Taken together, our results support that, by affecting tumor cell secretome, the cyto-nuclear ZO-1 pool may recruit immune cells, which could be permissive for tumor progression.

15.
Diagnostics (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573921

RESUMO

Chronic obstructive pulmonary disease (COPD) is a frequent respiratory disease. However, its pathophysiology remains partially elucidated. Epithelial remodeling including alteration of the cilium is a major hallmark of COPD, but specific assessments of the cilium have been rarely investigated as a diagnostic tool in COPD. Here we explore the dysregulation of the ciliary function (ciliary beat frequency (CBF)) and differentiation (multiciliated cells formation in air-liquid interface cultures) of bronchial epithelial cells from COPD (n = 17) and non-COPD patients (n = 15). CBF was decreased by 30% in COPD (11.15 +/- 3.37 Hz vs. 7.89 +/- 3.39 Hz, p = 0.037). Ciliary differentiation was altered during airway epithelial cell differentiation from COPD patients. While the number of multiciliated cells decreased (p < 0.005), the number of primary ciliated cells increased (p < 0.05) and primary cilia were shorter (p < 0.05). Altogether, we demonstrate that COPD can be considered as a ciliopathy through both primary non-motile cilia modifications (related to airway epithelial cell repair and remodeling) and motile cilia function impairment (associated with decrease sputum clearance and clinical respiratory symptoms). These observations encourage considering cilia-associated features in the complex COPD physiopathology and highlight the potential of cilia-derived biomarkers for diagnosis.

16.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298636

RESUMO

Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.

17.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206324

RESUMO

The gene cluster region, CHRNA3/CHRNA5/CHRNB4, encoding for nicotinic acetylcholine receptor (nAChR) subunits, contains several genetic variants linked to nicotine addiction and brain disorders. The CHRNA5 single-nucleotide polymorphism (SNP) rs16969968 is strongly associated with nicotine dependence and lung diseases. Using immunostaining studies on tissue sections and air-liquid interface airway epithelial cell cultures, in situ hybridisation, transcriptomic and cytokines detection, we analysed rs16969968 contribution to respiratory airway epithelial remodelling and modulation of inflammation. We provide cellular and molecular analyses which support the genetic association of this polymorphism with impaired ciliogenesis and the altered production of inflammatory mediators. This suggests its role in lung disease development.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Inflamação , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Mucosa Respiratória/metabolismo , Células Cultivadas , Cromossomos Humanos Par 15 , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pneumopatias/genética , Pneumopatias/metabolismo , Família Multigênica , Proteínas do Tecido Nervoso/fisiologia , Receptores Nicotínicos/fisiologia , Mucosa Respiratória/fisiopatologia , Tabagismo/genética , Tabagismo/metabolismo
18.
J Cell Mol Med ; 25(15): 7575-7579, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170075

RESUMO

The alteration of the mucociliary clearance is a major hallmark of respiratory diseases related to structural and functional cilia abnormalities such as chronic obstructive pulmonary diseases (COPD), asthma and cystic fibrosis. Primary cilia and motile cilia are the two principal organelles involved in the control of cell fate in the airways. We tested the effect of primary cilia removal in the establishment of a fully differentiated respiratory epithelium. Epithelial barrier integrity was not altered while multiciliated cells were decreased and mucous-secreting cells were increased. Primary cilia homeostasis is therefore paramount for airway epithelial cell differentiation. Primary cilia-associated pathophysiologic implications require further investigations in the context of respiratory diseases.


Assuntos
Diferenciação Celular , Cílios/metabolismo , Mucosa Respiratória/citologia , Células Cultivadas , Homeostase , Humanos , Mucosa Respiratória/metabolismo
19.
Respir Res ; 22(1): 74, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639936

RESUMO

The pathophysiology of chronic obstructive pulmonary disease (COPD) relies on airway remodelling and inflammation. Alterations of mucociliary clearance are a major hallmark of COPD caused by structural and functional cilia abnormalities. Using transcriptomic databases of whole lung tissues and isolated small airway epithelial cells (SAEC), we comparatively analysed cilia-associated and ciliopathy-associated gene signatures from a set of 495 genes in 7 datasets including 538 non-COPD and 508 COPD patients. This bio-informatics approach unveils yet undescribed cilia and ciliopathy genes associated with COPD including NEK6 and PROM2 that may contribute to the pathology, and suggests a COPD endotype exhibiting ciliopathy features (CiliOPD).


Assuntos
Ciliopatias/genética , Bases de Dados Genéticas , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA/métodos , Ciliopatias/diagnóstico , Ciliopatias/epidemiologia , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
20.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050277

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.


Assuntos
Pulmão/metabolismo , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Adulto , Fatores Etários , Ciclo Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Detecção de Sinal Psicológico , Fumar , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...