Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(19): 12970-12982, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822857

RESUMO

In this work, we demonstrate that amorphous and porous molybdenum silicate microspheres are highly active catalysts for heterogeneous propylene metathesis. Homogeneous molybdenum silicate microspheres and aluminum-doped molybdenum silicate microspheres were synthesized via a nonaqueous condensation of a hybrid molybdenum biphenyldicarboxylate-based precursor solution with (3-aminopropyl)triethoxysilane. The as-prepared hybrid metallosilicate products were calcined at 500 °C to obtain amorphous and porous molybdenum silicate and aluminum-doped molybdenum silicate microspheres with highly dispersed molybdate species inserted into the silicate matrix. These catalysts contain mainly highly dispersed MoOx species, which possess high catalytic activity in heterogeneous propylene metathesis to ethylene and butene. Compared to conventional silica-supported MoOx catalysts prepared via incipient wetness impregnation (MoIWI), the microspheres with low Mo content (1.5-3.6 wt %) exhibited nearly 2 orders of magnitude higher steady-state propylene metathesis rates at 200 °C, approaching site time yields of 0.11 s-1.

2.
Biomacromolecules ; 24(1): 132-140, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542490

RESUMO

Xylooligosaccharides (XOSs) gained much attention for their use in food and animal feed, attributed to their prebiotic function. These short-chained carbohydrates can be enzymatically produced from xylan, one of the most prevalent forms of hemicellulose. In this work, endo-1,4-ß-xylanase from Thermotoga maritima was immobilized on cellulose-based beads with the goal of producing xylooligosaccharides with degrees of polymerization (DPs) in the range of 4-6 monomeric units. More specifically, the impact of different spacer arms, tethers connecting the enzyme with the particle, on the expressed enzymatic activity and oligosaccharide yield was investigated. After surface functionalization of the cellulose beads, the presence of amines was confirmed with time of flight secondary ion mass spectrometry (TOF-SIMS), and the influence of different spacer arms on xylanase activity was established. Furthermore, XOSs (DPs 2-6) with up to 58.27 mg/g xylan were obtained, which were greatly enriched in longer oligosaccharides. Approximately 80% of these XOSs displayed DPs between 4 and 6. These findings highlight the importance of topochemical engineering of carriers to influence enzyme activity, and the work puts forward an enzymatic system focusing on the production of longer xylooligosaccharides.


Assuntos
Celulose , Endo-1,4-beta-Xilanases , Endo-1,4-beta-Xilanases/química , Xilanos/química , Hidrólise , Oligossacarídeos/química , Glucuronatos/química
3.
ACS Nano ; 16(10): 15837-15849, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36066922

RESUMO

High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.

4.
ACS Appl Bio Mater ; 5(7): 3180-3192, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35801397

RESUMO

Surface biofunctionalization with proteins is the key to many biomedical applications. In this study, a solvent-free method for the controlled construction of protein thin films is reported. Using large argon gas cluster ion beams, proteins are sputtered from a target (a pool of pure proteins), and collected on a chosen substrate, being nearly any solid material. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the presence of intact protein molecules on the collectors. Furthermore, lowering the energy per atom in the cluster projectiles down to 1 eV/atom allowed more than 60% of bradykinin molecules to be transferred intact. This protein deposition method offers a precise control of the film thickness as the transferred protein quantity is proportional to the argon clusters ion dose reached for the transfer. This major feature enables building protein films from (sub)mono- to multilayers, without upper limitation of the thickness. A procedure was developed to measure the film thickness in situ the ToF-SIMS instrument. The versatility and potential of this soft-landing alternative for further applications is demonstrated on the one hand by building a protein thin film at the surface of paper, a substrate hardly compatible with solution-based adsorption methods. On the other hand, the possibility to achieve alternated multilayer buildup is demonstrated with the construction of a bilayer composed of bradykinin and Irganox, with the two layers well separated. These results lay the first stone toward original and complex multilayers that could previously not be considered with solution-based adsorption methods, and this regardless of the substrate nature.


Assuntos
Bradicinina , Espectrometria de Massa de Íon Secundário , Argônio/química , Espectrometria de Massa de Íon Secundário/métodos
5.
ChemSusChem ; 15(19): e202200868, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900053

RESUMO

Upcoming biorefineries, such as lignin-first provide renewable aromatics containing unique aliphatic alcohols. In this context, a Cu-ZrO2 catalyzed hydrogen borrowing approach was established to yield tertiary amine from the lignin model monomer 3-(3,4-dimethoxyphenyl)-1-propanol and the actual lignin-derived monomers, (3-(4-hydroxyphenyl)-1-propanol and dihydroconiferyl alcohol), with dimethylamine. Various industrial metal catalysts were evaluated, resulting in nearly quantitative mass balances for most catalysts. Identified intermediates, side and reaction products were placed into a corresponding reaction network, supported by kinetic evolution experiments. Cu-ZrO2 was selected as most suitable catalyst combining high alcohol conversion with respectable aliphatic tertiary amine selectivity. Low pressure H2 was key for high catalyst activity and tertiary amine selectivity, mainly by hindering undesired reactant dimethylamine disproportionation and alcohol amidation. Besides dimethylamine model, diverse secondary amine reactants were tested with moderate to high tertiary amine yields. As most active catalytic site, highly dispersed Cu species in strong contact with ZrO2 is suggested. ToF-SIMS, N2 O chemisorption, TGA and XPS of spent Cu-ZrO2 revealed that imperfect amine product desorption and declining surface Cu lowered the catalytic activity upon catalyst reuse, while thermal reduction readily restored the initial activity and selectivity demonstrating catalyst reuse.


Assuntos
Cobre , Lignina , 1-Propanol , Aminas , Catálise , Dimetilaminas , Etanol , Hidrogênio
6.
Soft Matter ; 17(44): 10032-10041, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34705005

RESUMO

This work aims at understanding the influence of the substrate temperature (Ts) on the viscoelastic properties of propanethiol plasma polymer films (PPFs). By means of state-of-the-art AFM characterization-based techniques including peak force quantitative nanomechanical mapping (PFQNM), nano dynamic mechanical analysis (nDMA) and "scratch" experiments, it has been demonstrated that the mechanical behaviour of PPFs is dramatically affected by the thermal conditions of the substrate. Indeed, the material behaves from a high viscous liquid (i.e. viscosity ∼ 106 Pa s) to a viscoelastic solid (loss modulus ∼ 1.17 GPa, storage modulus ∼ 1.61 GPa) and finally to an elastic solid (loss modulus ∼ 1.95 GPa, storage modulus ∼ 8.51 GPa) when increasing Ts from 10 to 45 °C. This behaviour is ascribed to an increase in the surface glass transition temperature of the polymeric network. The latter has been correlated with the chemical composition through the presence of unbound molecules acting as plasticizers and the cross-linking density of the layers. In a second step, this knowledge is exploited for the fabrication of a nanopattern by generating surface instabilities in the propanethiol PPF/Al bilayer system.

7.
J Phys Chem Lett ; 12(2): 952-957, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33443416

RESUMO

Providing inert materials with a biochemical function, for example using proteins, is a cornerstone technology underlying many applications. However, the controlled construction of protein thin films remains a major challenge. Here, an innovative solvent-free approach for protein deposition is reported, using lysozyme as a model. By diverting a time-of-flight secondary ion mass spectrometer (ToF-SIMS) from its standard analytical function, large argon clusters were used to achieve protein transfer. A target consisting of a pool of proteins was bombarded with 10 keV Ar5000+ ions, and the ejected proteins were collected on a silicon wafer. The ellipsoidal deposition pattern was evidenced by ToF-SIMS analysis, while SDS-PAGE electrophoresis confirmed the presence of intact lysozyme on the collector. Finally, enzymatic activity assays demonstrated the preservation of the three-dimensional structure of the transferred proteins. These results pave the way to well-controlled protein deposition using ion beams and to the investigation of more complex multilayer architectures.

8.
Phys Chem Chem Phys ; 22(31): 17427-17447, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32568320

RESUMO

Ionised cluster beams have been produced and employed for thin film deposition and surface processing for half a century. In the last two decades, kiloelectronvolt cluster ions have also proved to be outstanding for surface characterisation by secondary ion mass spectrometry (SIMS), because their sputter and ion yields are enhanced in a non-linear fashion with respect to monoatomic projectiles, with a resulting step change of sensitivity for analysis and imaging. In particular, large gas cluster ion beams, or GCIB, have now become a reference in organic surface and thin film analysis using SIMS and X-ray photoelectron spectroscopy (XPS). The reason is that they induce soft molecular desorption and offer the opportunity to conduct damageless depth-profiling and 3D molecular imaging of the most sensitive organic electronics and biological samples, with a nanoscale depth resolution. In line with these recent developments, the present review focuses on rather weakly-bound, light-element cluster ions, such as noble or other gas clusters, and water or alcohol nanodroplets (excluding clusters made of metals, inorganic salts or ionic liquids) and their interaction with surfaces (essentially, but not exclusively, organic). The scope of this article encompasses three aspects. The first one is the fundamentals of large cluster impacts with surfaces, using the wealth of information provided by molecular dynamics simulations and experimental observations. The second focus is on recent applications of large cluster ion beams in surface characterisation, including mass spectrometric analysis and 2D localisation of large molecules, molecular depth-profiling and 3D molecular imaging. Finally, the perspective explores cutting edge developments, involving (i) new types of clusters with a chemistry designed to enhance performance for mass spectrometry imaging, (ii) the use of cluster fragment ion backscattering to locally retrieve physical surface properties and (iii) the fabrication of new biosurface and thin film architectures, where large cluster ion beams are used as tools to transfer biomolecules in vacuo from a target reservoir to any collector substrate.


Assuntos
Íons/química , Imagem Molecular , Sondas Moleculares , Álcoois/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/química
9.
Langmuir ; 35(22): 7161-7168, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074993

RESUMO

This work presents a simple, fast (20 min treatment), inexpensive, and highly efficient method for synthesizing nitrogen-doped titanium dioxide (N-TiO2) as an enhanced visible light photocatalyst. In this study, N-TiO2 coatings were fabricated by atmospheric pressure dielectric barrier discharge (DBD) at room temperature. The composition and the chemical bonds of the TiO2 and N-TiO2 coatings were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The results indicate that the nitrogen element has doped the TiO2 lattice, which was further confirmed by Raman spectroscopy and grazing incidence X-ray diffraction (GIXRD). The doping mechanism was investigated using OES to study the plasma properties under different conditions. It suggests that the NH radicals play a key role in doping TiO2. The concentration of nitrogen in the N-TiO2 coatings can be controlled by changing the concentration of NH3 in the plasma or the applied power to adjust the concentration of NH radicals in the plasma. The band gap of N-TiO2 was reduced after NH3/Ar plasma treatment from 3.25 to 3.18 eV. Consequently, the N-TiO2 coating showed enhanced photocatalytic activity under white-light-emitting-diode (LED) irradiation. The photocatalytic degradation rate for the N-TiO2 coating was about 1.4 times higher than that of the undoped TiO2 coating.

10.
Chemistry ; 25(6): 1436-1440, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30325086

RESUMO

The chemical functionalization of carbon nanotubes is often a prerequisite prior to their use in various applications. The covalent grafting of 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (BPin) functional groups directly on the surface of multi- and single-walled carbon nanotubes, activated by nucleophilic addition of nBuLi, was carried out. Thermogravimetric analysis (TGA) coupled with mass spectrometry, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS) confirmed the efficiency of this methodology and proved the integrity and covalent grafting of the BPin functional groups. These groups were further reacted with various nucleophiles in the presence of a copper(II) source in the conditions of the aerobic Chan-Lam-Evans coupling. The resulting materials were characterized by TGA, XPS and ToF-SIMS. This route is efficient, reliable and among the scarce reactions that enable the direct grafting of heteroatoms at carbonaceous material surfaces.

11.
Materials (Basel) ; 11(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958401

RESUMO

The thickness characterization of transparent protective coatings on functional, transparent materials is often problematic. In this paper, a toolbox to determine the thicknesses of a transparent coating on functional window films is presented. The toolbox consists of a combination of secondary ion mass spectrometry and profilometry and can be transferred to other transparent polymeric materials. A coating was deposited on designed model samples, which were characterized with cross-sectional views in transmission and in scanning/transmission electron microscopy and ellipsometry. The toolbox was then used to assess the thicknesses of the protective coatings on the pilot-scale window films. This coating was synthesized using straightforward sol-gel alkoxide chemistry. The kinetics of the condensation are studied in order to obtain a precursor that allows fast drying and complete condensation after simple heat treatment. The shelf life of this precursor solution was investigated in order to verify its accordance to industrial requirements. Deposition was performed successfully at low temperatures below 100 °C, which makes deposition on polymeric foils possible. By using roll-to-roll coating, the findings of this paper are easily transferrable to industrial scale. The coating was tested for scratch resistance and adhesion. Values for the emissivity (ε) of the films were recorded to justify the use of the films obtained as infrared reflective window films. In this work, it is shown that the toolbox measures similar thicknesses to those measured by electron microscopy and can be used to set a required thickness for protective coatings.

12.
Arch Toxicol ; 92(5): 1673-1684, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550861

RESUMO

Rechargeable Li-ion batteries (LIB) are increasingly produced and used worldwide. LIB electrodes are made of micrometric and low solubility particles, consisting of toxicologically relevant elements. The health hazard of these materials is not known. Here, we investigated the respiratory hazard of three leading LIB components (LiFePO4 or LFP, Li4Ti5O12 or LTO, and LiCoO2 or LCO) and their mechanisms of action. Particles were characterized physico-chemically and elemental bioaccessibility was documented. Lung inflammation and fibrotic responses, as well as particle persistence and ion bioavailability, were assessed in mice after aspiration of LIB particles (0.5 or 2 mg); crystalline silica (2 mg) was used as reference. Acute inflammatory lung responses were recorded with the 3 LIB particles and silica, LCO being the most potent. Inflammation persisted 2 m after LFP, LCO and silica, in association with fibrosis in LCO and silica lungs. LIB particles persisted in the lungs after 2 m. Endogenous iron co-localized with cobalt in LCO lungs, indicating the formation of ferruginous bodies. Fe and Co ions were detected in the broncho-alveolar lavage fluids of LFP and LCO lungs, respectively. Hypoxia-inducible factor (HIF) -1α, a marker of fibrosis and of the biological activity of Co ions, was upregulated in LCO and silica lungs. This study identified, for the first time, the respiratory hazard of LIB particles. LCO was at least as potent as crystalline silica to induce lung inflammation and fibrosis. Iron and cobalt, but not lithium, ions appear to contribute to LFP and LCO toxicity, respectively.


Assuntos
Poluentes Atmosféricos/toxicidade , Cobalto/toxicidade , Fontes de Energia Elétrica , Lítio/toxicidade , Óxidos/toxicidade , Pneumonia/induzido quimicamente , Administração por Inalação , Poluentes Atmosféricos/química , Poluentes Atmosféricos/farmacocinética , Animais , Disponibilidade Biológica , Líquido da Lavagem Broncoalveolar/química , Cobalto/química , Cobalto/farmacocinética , Feminino , Fibrose/induzido quimicamente , Fibrose/patologia , Ferro/química , Ferro/farmacocinética , Ferro/toxicidade , Lítio/química , Lítio/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Óxidos/química , Óxidos/farmacocinética , Tamanho da Partícula , Pneumonia/patologia , Titânio/química , Titânio/farmacocinética , Titânio/toxicidade , Testes de Toxicidade
13.
J Am Soc Mass Spectrom ; 29(1): 4-7, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29181811

RESUMO

In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the intensity variations of the backscattered Arn+ clusters as a function of temperature for several amorphous polymer surfaces (polyolefins, polystyrene, and polymethyl methacrylate). For all these investigated polymers, our results show a transition of the ratio Ar2+/(Ar2+ + Ar3+) when the temperature is scanned from -120 °C to +125 °C (the exact limits depend on the studied polymer). This transition generally spans over a few tens of degrees and the temperature of the inflection point of each curve is always lower than the bulk glass transition temperature (Tg) reported for the considered polymer. Due to the surface sensitivity of the cluster backscattering process (several nanometers), the presented analysis could provide a new method to specifically evaluate a surface transition temperature of polymers, with the same lateral resolution as the gas cluster beam. Graphical abstract ᅟ.

15.
Beilstein J Nanotechnol ; 6: 1287-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26199832

RESUMO

Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.

16.
J Phys Chem B ; 119(33): 10784-97, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26204428

RESUMO

We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.


Assuntos
Laboratórios , Compostos Orgânicos/química , Espectroscopia Fotoeletrônica , Espectrometria de Massa de Íon Secundário , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/química , Fluorenos/química , Fluorbenzenos/química
17.
Langmuir ; 30(33): 10057-65, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25101979

RESUMO

The functionalization of poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) polyelectrolyte multilayers by silanes reacted from the gas phase is studied depending on reaction time and temperature, pH of multilayer assembly, and nature of the reacting silane group. Whereas monochlorosilanes only diffuse in the multilayer and graft in limited amount, trichloro- and triethoxysilanes form rapidly a continuous gel layer on the surface of the multilayer, with a thickness of ca. 10-20 nm. The reactivity is lower in the strongly paired regime of the multilayers (neutral assembly conditions) but otherwise is not affected by the pH of multilayer assembly. Silanization considerably broadens the range of possible functionalities for (PAH/PAA) multilayers: hydrophobicity, surface-initiated polymerization, and grafting of fluorescent probes by the formation of disulfide bridges are demonstrated. Conversely, our results also broaden the range of substrates that can be functionalized by silanes, using (PAH/PAA) multilayers as ubiquitous anchoring layers.

18.
Biomacromolecules ; 12(11): 4104-11, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21939222

RESUMO

This study shows that electrophoretic deposition (EPD) is a fast and efficient technique for producing protein nanotube-based biointerfaces. Well-shaped collagen-based nanotubes of controlled dimensions are synthesized by a template method combined with the layer-by-layer (LbL) assembly technique. Separation of nanotubes from the template material and collection of nanotubes on ITO glass carried out by EPD leads to a fairly homogeneous distribution of protein nanotubes at the support surface. Biointerfaces with different and tunable densities of protein nanotubes are obtained by changing either the applied voltage, solution concentration of nanotubes, or deposition time. Moreover, it is proved that the collected nanotubes are template-free and keep their biofunctional outermost layer after EPD. A preliminary study of the behavior of preosteoblasts cells with the elaborated biointerfaces indicates a specific interaction of cells with the nanotubes through filopodia. This contribution paves the way to the easy preparation of a large variety of useful nanostructured collagen and other protein-based interfaces for controlling cell-surface interactions in diverse biomaterials applications.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Colágeno/química , Nanotubos/química , Células 3T3 , Animais , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Eletroforese , Camundongos , Nanotubos/ultraestrutura , Poliestirenos/química
19.
J Am Soc Mass Spectrom ; 21(12): 2005-10, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864353

RESUMO

The enhancement of the static secondary ion mass spectrometry (SIMS) signals resulting from the injection, closely to the sample surface, of H(2)O vapor at relatively high-pressure, was investigated for a set of organic materials. While the ion signals are generally improved with increasing H(2)O pressure upon 12 keV Ga(+) bombardment, a specific enhancement of the protonated ion intensity is clearly demonstrated in each case. For instance, the presence of H(2)O vapor induces an enhancement by one order of magnitude of the [M + H](+) static SIMS intensity for the antioxidant Irgafos 168 and a ∼1.5-fold increase for polymers such as poly(vinyl pyrrolidone).


Assuntos
Espectrometria de Massas/métodos , Processamento de Sinais Assistido por Computador , Vapor , Gases/química , Peso Molecular , Fosfitos/química , Povidona/química , Pressão , Sensibilidade e Especificidade
20.
J Mass Spectrom ; 41(4): 527-42, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16541387

RESUMO

Most of the first-row transition-metal oxides, M(A)O(B) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) were examined by static secondary ion mass spectrometry (s-SIMS) and laser ablation/ionization Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS). Positive and negative ions show strong correlation between the studied oxide and the detected cluster ions. Specific M(x)O(y) (+/-) species were systematically observed with both MS techniques for each investigated M(A)O(B) transition-metal oxide. Moreover, the ion composition and ion distribution are greatly dependent on the ionization technique. Laser ablation (LA)/ionization leads to larger cluster ions (ionic species with nearly hundred atoms were in particular detected for Sc2O3 and Y2O3 oxides), whereas hydrogenated, dihydrogenated, and sometimes trihydrogenated species were observed in s-SIMS. However, the ion distribution for a given M(x)O(y) (+/-) ion series (i.e. ions including the same number of metal atoms M) generally presented important similarities in both techniques.Finally, it was demonstrated that the chemical state of metal atoms in the observed ionic species is closely dependent on the metal electronic valence shell. High valence states (+III, +IV, +V, and +VI) are favored for metals with a less-than-half full valence shell configuration, whereas for other first-row transition metals (manganese, iron, cobalt, nickel, copper and zinc) lower metal valence states (0, +I or, +II) are involved.


Assuntos
Compostos Inorgânicos/química , Óxidos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Elementos de Transição/química , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...