Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21824807

RESUMO

Giant extracellular hemoglobins present high redox stability due to their supramolecular architecture, high number of polypeptide chains and great compaction of protein subunits. The oligomeric assembly and the changes in the polypeptidic structure can influence the autoxidation rate of the heme proteins, being that different nucleophiles can act in this process due to pH alterations. In the present work, we have studied the autoxidation rate of whole Glossoscolex paulistus (HbGp) giant extracellular hemoglobin, as well as the autoxidation rate of the isolated d monomer of HbGp studied regarding pH variations. The kinetic decay behavior is dependent on pH, presenting mono-exponential or bi-exponential character, depending on the oligomeric state of the protein. Thus, the oligomeric dissociation in specific pH values demonstrated a bi-exponential kinetic decay. A mono-exponential kinetic behavior was verified in the pH range of 5.9-7.3, which is assigned to the native whole protein. In alkaline medium, the presence of hydroxide ions leads the autoxidation of whole hemoglobin to a complex behavior, which is described by the combination of two first-order kinetics. The slow process occurs due to the d monomer autoxidation. At pH 7.0, the kinetic is mono-exponential, indicating a highly conserved oligomeric structure. In acid medium, the proton-catalyzed autoxidation occurs both on the whole hemoglobin and in the d monomer. It has been found that proximal and distal histidines develop determinant roles regarding the autoxidation rate, being that the distal histidine controls the contact of ligands with the ferrous center through a very interesting "swinging door" mechanism. Despite the significant sensitivity of the distal histidine to the presence of protons, water molecules and anions, the influence of chemical changes around the heme, such as pH changes, is much more effective in hemoproteins without this amino acid as distal residue. This fact denotes the ability of HbGp to adapt to environmental disturbances caused by the presence of the distal histidine, which is responsible for the great redox and oligomeric stabilities encountered in HbGp.


Assuntos
Hemoglobinas/química , Oxigênio/química , Animais , Anelídeos , Catálise , Dicroísmo Circular , Espaço Extracelular/metabolismo , Histidina/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Oxirredução , Prótons , Espectrofotometria Ultravioleta/métodos , Água/química
2.
Comp Biochem Physiol B Biochem Mol Biol ; 150(3): 292-300, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18485775

RESUMO

The present article is focused on the transitions of ferric heme species of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) induced by successive alterations in pH, involving alkaline and acid mediums. Electron paramagnetic resonance (EPR) is the spectroscopy used to evaluate the transitions that occur in the first coordination sphere of ferric ion as a consequence of ligand changes in a wide range of pH, since this tool is very sensitive to slight changes that occur in the heme pocket of paramagnetic species. This approach is adequate to obtain information regarding the reversibility/irreversibility that involves the heme transitions induced by pH, since the degree of reversibility is associated to the intensity of the changes that occur in the spatial configuration of the polypeptide chains, which is clearly associated to the first coordination sphere. The results demonstrate a significant degree of irreversibility of heme transitions, since the final species, which do not present any change after 6 h of its respective formations, are quite different of the initial species. The results denote that the more stable species are the bis-histidine (hemichrome) and pentacoordinate species, due to the properties of their ligands and to the mechanical influence of the respective subunits. EPR spectra allow to distinguish the types of hemichrome species, depending on the reciprocal orientation between the histidine axial ligands, in agreement with Walker's Classification [Walker, F.A., 1999. Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coord. Chem. Rev. 185-186, 471-534]. However, these transitions are not completed, i.e., the appearance of a determined species does not mean the total consumption of its precursor species, implying the coexistence of several types of species, depending on pH. Furthermore, it is possible to conclude that a "pure" EPR spectrum of aquomet ferric species is an important indicator of a high level of conservation referent to the "native" configuration of whole hemoglobin, which is only encountered at pH 7.0. The results allow to infer important physico-chemical properties as well as to evaluate aspects of the structure-activity relationship of this hemoprotein, furnishing information with respect to the denaturation mechanism induced by drastic changes in pH. These data are very useful since HbGp has been proposed as prototype of substitute of blood, thus requiring wide knowledge about its structural and chemical properties.


Assuntos
Heme/química , Hemoglobinas/química , Oligoquetos/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio
3.
Int J Biol Macromol ; 42(2): 103-10, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17996935

RESUMO

The present work is focused on the complex ferric heme species equilibrium of the giant extracellular hemoglobin from Glossoscolex paulistus (HbGp) in alkaline medium. EPR, UV-vis and CD spectroscopies were used in order to characterize the ferric heme species formed as a consequence of the medium alkalization as well as the oligomeric changes occurring simultaneously with heme transitions. EPR experiments allowed us to characterize the different hemichrome species in equilibrium, illustrating the small difference in spin state of this species and the complexity of the equilibira involving hemoglobin ferric species. The results emphasize the importance of the alkaline oligomeric dissociation, which is decisive to promote the heme ferric species transition as function of the increase in water accessibility to the heme pocket. In fact, the oligomeric dissociation in alkaline medium is a consequence of the intense electrostatic repulsion between anionic charges on the protein surface, since the isoelectric point (pI) of this hemoglobin is acid. This explains the more drastic aquomet-hemichrome-pentacoordinate species transition in alkaline medium as compared with the acid medium. However, these heme species transitions are not completed, i.e., the appearance of new species does not mean the total consumption of the precursor species. This equilibrium complexity is associated to the effective influence of oligomeric arrangement of this whole hemoglobin, which present 144 molecular subunits. The acid pI is probably an important factor to the structure-activity relationship of the giant extracellular hemoglobins.


Assuntos
Espaço Extracelular/química , Compostos Férricos/química , Hemeproteínas/química , Hemoglobinas/química , Oligoquetos/química , Álcalis , Animais , Soluções Tampão , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Estrutura Molecular , Espectrofotometria
4.
Biophys Chem ; 114(2-3): 253-60, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15829360

RESUMO

The complex oligomeric assembly of the hemoglobin subunits may influence the autoxidation rate. To understand this relation, the rate of autoxidation was studied at pH 9.0, where the Glossoscolex paulistus Hemoglobin (GpHb) dissociates. At alkaline pH, this hemoglobin is dissociated into monomers, trimers and tetramers, allowing the study of the integral protein and monomer subunit autoxidation on independent experiments. The autoxidation rate was evaluated in the presence and absence of cyanide (CN(-)), a strong field ligand to the ferric ion. The oxidation kinetic was monitored using the UV-vis absorption at 415 nm, and resulted in: i) bi-exponential kinetics for the whole hemoglobin (indicating a fast and a slow oxidative process) and ii) mono-exponential for the monomer (indicating a single process). To understand the specific characteristics of each autoxidation process, Arrhenius plots allowed the determination of the activation energy. The experimental results indicate for the whole hemoglobin in the absence of CN(-) an activation energy of 150 +/- 10 kJ mol(-1) for the fast and the slow processes. Under the same conditions the monomer displayed an activation energy of 160 +/- 10 kJ mol(-1), very close to the value obtained for the integral protein. The pseudo-second order rate constant for the whole protein autoxidation by CN(-) showed two different behaviors characterized by a rate constant k(CN1)' = 0.11 +/- 0.02 s(-1) mol(-1) L for CN(-) concentrations lower than 0.012 mol L(-1); and k(CN1)" = 0.76 +/- 0.04 s(-1) mol(-1) L at higher concentrations for the fast process, while the slow process remain constant with k(CN2) = 0.033 +/- 0.002 s(-1) mol(-1) L. The monomer has a characteristic rate constant of 0.041 +/- 0.002 s(-1) mol(-1) L for all cyanide concentrations. Comparing the results for the slow process of the whole hemoglobin and the oxidation of the monomer, it is possible to infer that the slow process has a strong contribution of the monomer in the whole hemoglobin kinetic. Moreover, as disulfide linkers sustain the trimer assembly, cooperativity may explain the higher kinetic constant for this subunit.


Assuntos
Cianetos/química , Hemoglobinas/química , Hidróxidos/química , Oligoquetos/química , Animais , Anelídeos , Concentração de Íons de Hidrogênio , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...