Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Care ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981652

RESUMO

BACKGROUND: High-flow nasal cannula (HFNC) systems employ different methods to provide aerosol to patients. This study compared delivery efficiency, particle size, and regional deposition of aerosolized bronchodilators during HFNC in neonatal, pediatric, and adult upper-airway and lung models between a proximal aerosol adapter and distal aerosol circuit chamber. METHODS: A filter was connected to the upper airway to a spontaneously breathing lung model. Albuterol was nebulized using the aerosol adapter and circuit at different clinical flow settings. The aerosol mass deposited in the upper airway and lung was quantified. Particle size was measured with a laser diffractometer. Regional deposition was assessed with a gamma camera at each nebulizer location and patient model with minimum flow settings. RESULTS: Inhaled lung doses ranged from 0.2-0.8% for neonates, 0.2-2.2% for the small child, and 0.5-5.2% for the adult models. Neonatal inhaled lung doses were not different between the aerosol circuit and adapter, but the aerosol circuit showed marginally greater lung doses in the pediatric and adult patient models. Impacted aerosols and condensation in the non-heated HFNC and aerosol delivery components contributed to the dispersion of coarse liquid droplets, high deposition (11-44%), and occlusion of the supine neonatal upper airway. In contrast, the upright pediatric and adult upper-airway models had minimal deposition (0.3-7.0%) and high fugitive losses (∼24%) from liquid droplets leaking out of the nose. The high impactive losses in the aerosol adapter (56%) were better contained than in the aerosol circuit, resulting in less cannula sputter (5% vs 22%), fewer fugitive losses (18% vs 24%), and smaller inhaled aerosols (5 µm vs 13 µm). CONCLUSIONS: The inhaled lung dose was low (1-5%) during HFNC. Approaches that streamline aerosol delivery are needed to provide safe and effective therapy to patients receiving aerosolized medications with this HFNC system.

2.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38696307

RESUMO

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Assuntos
Senescência Celular , Peróxido de Hidrogênio , Estresse Oxidativo , Água , Humanos , Senescência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Eletrólise
3.
Bioengineering (Basel) ; 9(4)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447711

RESUMO

The COVID-19 pandemic has brought attention to the need for developing effective respiratory support that can be rapidly implemented during critical surge capacity scenarios in healthcare settings. Lung support with bubble continuous positive airway pressure (B-CPAP) is a well-established therapeutic approach for supporting neonatal patients. However, the effectiveness of B-CPAP in larger pediatric and adult patients has not been addressed. Using similar principles of B-CPAP pressure generation, application of intermittent positive pressure inflations above CPAP could support gas exchange and high work of breathing levels in larger patients experiencing more severe forms of respiratory failure. This report describes the design and performance characteristics of the BubbleVent, a novel 3D-printed valve system that combined with commonly found tubes, hoses, and connectors can provide intermittent mandatory ventilation (IMV) suitable for adult mechanical ventilation without direct electrification. Testing of the BubbleVent was performed on a passive adult test lung model and compared with a critical care ventilator commonly used in tertiary care centers. The BubbleVent was shown to deliver stable PIP and PEEP levels, as well as timing control of breath delivery that was comparable with a critical care ventilator.

4.
Pharmaceutics ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34683873

RESUMO

Surfactant administration incorporates liquid bolus instillation via endotracheal tube catheter and use of a mechanical ventilator. Aerosolized surfactant has generated interest and conflicting data related to dose requirements and efficacy. We hypothesized that aerosolized surfactant with a novel breath-actuated vibrating mesh nebulizer would have similar efficacy and safety as instilled surfactant. Juvenile rabbits (1.50 ± 0.20 kg, n = 17) were sedated, anesthetized, intubated, and surfactant was depleted via lung lavage on mechanical ventilation. Subjects were randomized to receive standard dose liquid instillation via catheter (n = 5); low dose surfactant (n = 5) and standard dose surfactant (n = 5) via aerosol; and descriptive controls (no treatment, n = 2). Peridosing events, disease severity and gas exchange, were recorded every 30 min for 3 h following surfactant administration. Direct-Instillation group had higher incidence for peridosing events than aerosol. Standard dose liquid and aerosol groups had greater PaO2 from pre-treatment baseline following surfactant (p < 0.05) with greater ventilation efficiency with aerosol (p < 0.05). Our study showed similar improvement in oxygenation response with greater ventilation efficiency with aerosol than liquid bolus administration at the same dose with fewer peridosing events. Breath-synchronized aerosol via nebulizer has potential as a safe, effective, and economical alternative to bolus liquid surfactant instillation.

5.
Respir Care ; 66(10): 1572-1581, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33824173

RESUMO

BACKGROUND: Despite its established safety, efficacy, and relative simplicity, CPAP treatment is not widely available for newborns and infants in low- and middle-income settings. A novel bubble CPAP system was designed to address the gaps in quality and accessibility of existing CPAP systems by providing blended, humidified, and pressurized gases without the need for electricity, compressed air, or manual power. This was the first study that tested the performance of the system with a simulated patient model. METHODS: In a spontaneously breathing 3-dimensional printed nasal airway model of a preterm neonate, CPAP performance was assessed based on delivered pressure, oxygen level, and humidity at different settings. RESULTS: Preliminary device performance characteristics were within 5% among 3 separate devices. Performance testing showed accurate control of CPAP and oxygen concentration at all settings with the bubble CPAP system. Lung model pressure and oxygen concentration were shown to stay within ±0.5 cm H2O and ±4% of full scale of the device settings, respectively, with relative humidity > 80%. CONCLUSIONS: Performance testing of the bubble CPAP system demonstrated accurate control of CPAP and oxygen concentration with humidity levels suitable for premature newborns on noninvasive support.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Síndrome do Desconforto Respiratório do Recém-Nascido , Humanos , Lactente , Recém-Nascido , Oxigênio , Respiração , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia
6.
Crit Care Explor ; 3(2): e0338, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604579

RESUMO

OBJECTIVES: Effective treatment options for surfactant therapy in acute respiratory distress syndrome and coronavirus disease 2019 have not been established. To conduct preclinical studies in vitro and in vivo to evaluate efficiency, particle size, dosing, safety, and efficacy of inhaled surfactant using a breath-synchronized, nebulized delivery system in an established acute respiratory distress syndrome model. DESIGN: Preclinical study. SETTING: Research laboratory. SUBJECTS: Anesthetized pigs. INTERVENTION: In vitro analysis included particle size distribution and inhaled dose during simulated ventilation using a novel breath-synchronized nebulizer. Physiologic effects of inhaled aerosolized surfactant (treatment) were compared with aerosolized normal saline (control) in an adult porcine model (weight of 34.3 ± 0.6 kg) of severe acute respiratory distress syndrome (Pao2/Fio2 <100) with lung lavages and ventilator-induced lung injury during invasive ventilation. MEASUREMENTS AND MAIN RESULTS: Mass median aerosol diameter was 2.8 µm. In vitro dose delivered distal to the endotracheal tube during mechanical ventilation was 85% ± 5%. Nebulizers were functional up to 20 doses of 108 mg of surfactant. Surfactant-treated animals (n = 4) exhibited rapid improvement in oxygenation with nearly full recovery of Pao2/Fio2 (~300) and end-expiratory lung volumes with nominal dose less than 30 mg/kg of surfactant, whereas control subjects (n = 3) maintained Pao2/Fio2 less than 100 over 4.5 hours with reduced end-expiratory lung volume. There was notably greater surfactant phospholipid content and lower indicators of lung inflammation and pathologic lung injury in surfactant-treated pigs than controls. There were no peridosing complications associated with nebulized surfactant, but surfactant-treated animals had progressively higher airway resistance post treatment than controls with no differences in ventilation effects between the two groups. CONCLUSIONS: Breath-synchronized, nebulized bovine surfactant appears to be a safe and feasible treatment option for use in coronavirus disease 2019 and other severe forms of acute respiratory distress syndrome.

7.
Respir Care ; 64(4): 361-371, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30723169

RESUMO

BACKGROUND: Different brands of volume-targeted modes may vary the location of tidal volume (VT) monitoring and whether peak inspiratory pressure is adjusted based on inspiratory, expiratory, or leak-compensated VT. These variables may result in different levels of support provided to patients, especially when an endotracheal tube (ETT) leak is present. We hypothesized that there would be no differences in gas exchange, triggering, or work of breathing between volume-targeted modes of 3 different brands of equipment in a surfactant-deficient, spontaneously breathing animal model with and without an ETT leak. METHODS: Twelve rabbits (mean ± SD 1.61 ± 0.20 kg) were sedated, anesthetized, intubated, lavaged with 0.9% saline solution, and randomized in a crossover design so that each animal was supported by 3 different volume-targeted modes at identical settings with and without an ETT leak. After 30 min, arterial blood gas, VT, and esophageal and airway pressure were recorded for each condition, and pressure-rate product and percentage of successfully triggered breaths were calculated. RESULTS: Gas exchange and the pressure-rate product were not different between the ventilators in the absence of an ETT leak. When an ETT leak was introduced, volume-guarantee modes allowed a higher percentage of triggered breaths and peak inspiratory pressure, which resulted in higher minute ventilation, pH, and lower PaCO2 than the pressure-regulated volume control mode (P < .05). CONCLUSIONS: When a moderate ETT leak was present, volume-targeted modes that used proximal VT monitoring and triggering with adaptive leak compensation capabilities appeared more effective in providing ventilation support than did a ventilator that used measurements obtained from the back at the ventilator and does not have leak compensation.


Assuntos
Intubação Intratraqueal , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial , Volume de Ventilação Pulmonar , Ventiladores Mecânicos , Animais , Animais Recém-Nascidos/fisiologia , Gasometria/métodos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/instrumentação , Intubação Intratraqueal/métodos , Teste de Materiais , Modelos Animais , Monitorização Fisiológica/métodos , Surfactantes Pulmonares/metabolismo , Coelhos , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Testes de Função Respiratória/métodos , Mecânica Respiratória/fisiologia , Ventiladores Mecânicos/classificação , Ventiladores Mecânicos/normas
8.
Can J Respir Ther ; 54(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636639

RESUMO

INTRODUCTION: This study was designed to evaluate short-term physiologic outcomes of transitioning neonates with bronchopulmonary dysplasia (BPD) from intensive care unit (ICU) ventilators to both the Trilogy 202 (Philips Healthcare, Andover, MA) and LTV 1200 (CareFusion, Yorba Linda, CA) subacute ventilators. METHODS: Six infants with BPD requiring tracheostomies for support with a neonatal-specific ICU ventilator underwent placement of esophageal balloon catheters, airway pressure transducers, flow sensors, oxygen saturation (SpO2), and end tidal carbon dioxide (PETCO2) monitors. Noninvasive gas exchange, airflow, and airway and esophageal pressures (PES) were recorded following 20 min on the ICU ventilator. The infants were placed on the Trilogy 202 and LTV 1200 ventilators in random order at identical settings as the ICU ventilator. We measured noninvasive gas exchange, pressure-rate product (respiratory rate × ΔPES), ventilator response times, and the percentage of spontaneous breaths that triggered the ventilator at 20 min in each subject while being supported with each of the different subacute ventilators. RESULTS: The mean (SD) weight of the six infants was 4.983 (0.56) kg. There were no differences in heart rate (p = 0.51) or SpO2 (p = 0.97) but lower PETCO2, ΔPES, respiratory rate, pressure rate-product, response times, and greater percentage of subject initiated breaths that triggered the ventilator (p < 0.05) was observed with the Trilogy 202 than the LTV 1200. All six infants transitioned successfully from the ICU ventilator to the Trilogy 202 ventilator. CONCLUSION: In this small group of infants with BPD, the Trilogy 202 ventilator performed better than the LTV 1200. The improved subject efforts, per cent subject triggering, and response times observed with the Trilogy are likely related to differences in triggering algorithms, location of triggering mechanisms, and gas delivery system performance within the ventilators. These pilot data may be useful for informing future clinical study design and understanding differences in the level of support provided by different subacute ventilators in infants with BPD.

9.
Respir Care ; 60(3): 371-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25425706

RESUMO

BACKGROUND: High-frequency pressure oscillations created by gas bubbling through an underwater seal during bubble CPAP may enhance ventilation and aid in lung recruitment in premature infants. We hypothesized that there are no differences in the magnitude of oscillations in lung volume (ΔV) in a preterm neonatal lung model when different bubble CPAP systems are used. METHODS: An anatomically realistic replica of an infant nasal airway model was attached to a Silastic test lung sealed within a calibrated plethysmograph. Nasal prongs were affixed to the simulated neonate and supported using bubble CPAP systems set at 6 cm H2O. ΔV was calculated using pressure measurements obtained from the plethysmograph. RESULTS: The Fisher & Paykel Healthcare bubble CPAP system provided greater ΔV than any of the other devices at all of the respective bias flows (P < .05). The Fisher & Paykel Healthcare and Babi.Plus systems generally provided ΔV at lower frequencies than the other bubble CPAP systems. The magnitude of ΔV increased at bias flows of > 4 L/min in the Fisher & Paykel Healthcare, Airways Development, and homemade systems, but appeared to decrease as bias flow increased with the Babi.Plus system. CONCLUSIONS: The major finding of this study is that bubble CPAP can provide measureable ventilation effects in an infant lung model. We speculate that the differences noted in ΔV between the different devices are a combination of the circuit/nasal prong configuration, bubbler configuration, and frequency of oscillations. Additional testing is needed in spontaneously breathing infants to determine whether a physiologic benefit exists when using the different bubble CPAP systems.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/instrumentação , Ventilação de Alta Frequência/instrumentação , Modelos Biológicos , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Ventiladores Mecânicos/normas , Trabalho Respiratório/fisiologia , Desenho de Equipamento , Humanos , Recém-Nascido , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...