Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(6): 1200-1216, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705589

RESUMO

Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.


Assuntos
Sítios de Ligação Microbiológicos , Bacteriófagos , Integrases , Recombinação Genética , Bacteriófagos/genética , Integrases/metabolismo , Integrases/genética , Sítios de Ligação Microbiológicos/genética , Lactobacillus delbrueckii/virologia , Lactobacillus delbrueckii/genética , Recombinases/metabolismo , Recombinases/genética , Sítios de Ligação
2.
Front Cell Dev Biol ; 10: 983031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105361

RESUMO

Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA