Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 125(40): 21882-21890, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34992708

RESUMO

Environmentally persistent free radicals (EPFRs) are a class of toxic air pollutants that are found to form by the chemisorption of substituted aromatic molecules on the surface of metal oxides. In this study, we employ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to perform a temperature-dependent study of phenol adsorption on α-Fe2O3(0001) to probe the radical formation mechanism by monitoring changes in the electronic structure of both the adsorbed phenol and metal oxide substrate. Upon dosing at room temperature, new phenol-derived electronic states have been clearly observed in the UPS spectrum at saturation coverage. However, upon dosing at high temperature (>200 °C), both photoemission techniques have shown distinctive features that strongly suggest electron transfer from adsorbed phenol to Fe2O3 surface atoms and consequent formation of a surface radical. Consistent with the experiment, DFT calculations show that phenoxyl adsorption on the iron oxide surface at RT leads to a minor charge transfer to the adsorbed molecule. The experimental findings at high temperatures agree well with the EPFRs' proposed formation mechanism and can guide future experimental and computational studies.

2.
Chem Phys Lett ; 670: 5-10, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28824195

RESUMO

Environmentally persistent free radicals (EPFRs) have significant environmental and public health impacts. In this study, we demonstrate that EPFRs formed on ZnO nanoparticles provide two significant surprises. First, EPR spectroscopy shows that phenoxy radicals form readily on ZnO nanoparticles at room temperature, yielding EPR signals similar to those previously measured after 250°C exposures. Vibrational spectroscopy supports the conclusion that phenoxy-derived species chemisorb to ZnO nanoparticles under both exposure temperatures. Second, DFT calculations indicate that electrons are transferred from ZnO to the adsorbed organic (oxidizing the Zn), the opposite direction proposed by previous descriptions of EPFR formation on metal oxides.

3.
J Chem Phys ; 145(22): 224305, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984891

RESUMO

We measure high order harmonics from the molecule SF6 over a large range of phase matching conditions and observe several features in the harmonics that are largely independent of such macroscopic conditions. The experimental data are then compared to the quantitative rescattering theory for the generation of harmonics from three orbitals. With this comparison, we are able to assign spectroscopic features in the harmonics to contributions from 1t1g (HOMO) and 5t1u (HOMO-1) orbitals.

4.
Chem Phys Lett ; 638: 56-60, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26388650

RESUMO

Environmentally persistent free radicals (EPFRs) are toxic organic/metal oxide composite particles that have been discovered to form from substituted benzenes chemisorbed to metal oxides. Here, we perform photoelectron spectroscopy, electron energy loss spectroscopy, and low energy electron diffraction of phenol chemisorbed to ZnO(1 0 1̱ 0) and (0 0 0 1̱)-Zn to observe electronic structure changes and charge transfer as a function adsorption temperature. We show direct evidence of charge transfer from the ZnO surfaces to the phenol. This evidence can help gain a better understanding of EPFRs and be used to develop possible future remediation strategies.

5.
J Chem Phys ; 142(22): 224310, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071713

RESUMO

High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.


Assuntos
Citosina/química , Pirimidinas/química , Timina/química , Uracila/química , Elétrons , Gases/química , Íons , Fotoquímica , Fótons
6.
Langmuir ; 31(13): 3869-75, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25774565

RESUMO

Environmentally persistent free radicals (EPFRs) are a class of composite organic/metal oxide pollutants that have recently been discovered to form from a wide variety of substituted benzenes chemisorbed to commonly encountered oxides. Although a qualitative understanding of EPFR formation on particulate metal oxides has been achieved, a detailed understanding of the charge transfer mechanism that must accompany the creation of an unpaired radical electron is lacking. In this study, we perform photoelectron spectroscopy and electron energy loss spectroscopy on a well-defined model system-phenol chemisorbed on TiO2(110) to directly observe changes in the electronic structure of the oxide and chemisorbed phenol as a function of adsorption temperature. We show strong evidence that, upon exposure at high temperature, empty states in the TiO2 are filled and the phenol HOMO is depopulated, as has been proposed in a conceptual model of EPFR formation. This experimental evidence of charge transfer provides a deeper understanding of the EPFR formation mechanism to guide future experimental and computational studies as well as potential environmental remediation strategies.


Assuntos
Fenol/química , Fenóis/química , Titânio/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia Fotoeletrônica
7.
J Chem Phys ; 141(9): 094301, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25194366

RESUMO

The vibrational branching ratios in the photoionization of acrolein for ionization leading to the X̃²A' ion state were studied. Computed logarithmic derivatives of the cross section and the corresponding experimental data derived from measured vibrational branching ratios for several normal modes (ν9, ν10, ν11, and ν12) were found to be in relatively good agreement, particularly for the lower half of the 11-100 eV photon energy range considered. Two shape resonances have been found near photon energies of 15.5 and 23 eV in the photoionization cross section and have been demonstrated to originate from the partial cross section of the A' scattering symmetry. The wave functions computed at the resonance complex energies are delocalized over the whole molecule. By looking at the dependence of the cross section on the different normal mode displacements together with the wave function at the resonant energy, a qualitative explanation is given for the change of the cross sections with respect to changing geometry.


Assuntos
Acroleína/química , Íons/química , Processos Fotoquímicos , Fótons
8.
Artigo em Inglês | MEDLINE | ID: mdl-27134636

RESUMO

A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50-120 eV and 100-240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation.

9.
Chem Phys ; 422: 277-282, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24443627

RESUMO

We have examined the formation of environmentally persistent free radicals (EPFRs) from phenol over alumina and titania using both powder and single-crystal samples. Electron paramagnetic resonance (EPR) studies of phenol adsorbed on metal oxide powders indicates radical formation on both titania and alumina, with both oxides forming one faster-decaying species (lifetime on the order of 50-100 hours) and one slower-decayng species (lifetimes on the order of 1000 hours or more). Electron energy loss spectroscopy (EELS) measurements comparing physisorbed phenol on single-crystal TiO2(110) to phenoxyl radicals on the same substrate indicate distinct changes in the π-π* transitions from phenol after radical formation. The identical shifts are observed from EELS studies of phenoxyl radicals on ultrathin alumina grown on NiAl(110), indicating that this shift in the π-π* transition may be taken as a general hallmark of phenoxyl radical formation.

10.
J Chem Phys ; 131(4): 044311, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19655871

RESUMO

The vibrational branching ratios in the photoionization of C(6)F(6) leading to the C (2)B(2u) state of C(6)F(6)(+) are considered. Computational and experimental data are compared for the excitation of two totally symmetric modes. Resonant features at photon energies near 19 and 21 eV are found. A detailed analysis of the computed results shows that the two resonance states have different responses to changes in the C-C and C-F bond lengths. We find that the energies of both of the resonant states decrease with increasing bond lengths. In contrast to the energy positions, however, the resonant widths and the integrated oscillator strength of the resonances can either increase or decrease with increasing bond length depending on the nature and location of the resonant state and the location of the bond under consideration. With increasing C-F bond length, we find that the energy of the antibonding sigma resonance localized on the ring has a decreasing resonance energy and also a decreasing lifetime. This behavior is in contrast to the usual behavior of shape resonance energies where increasing a bond length leads to decreasing resonance energies and increasing resonance lifetimes. Finally, for the first time, we examine the effect of simultaneously occurring multiple vibrations on the resonance profile for valence photoionization, and we find that the inclusion of more than a single vibrational mode substantially attenuates the strength of resonance.

11.
J Chem Phys ; 130(4): 044302, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19191380

RESUMO

Vibrationally resolved photoelectron spectra of OCS(+)(C (2)Sigma(+)) are used to probe coupling between photoelectron motion and molecular vibration for a simple asymmetric system. Spectra are reported over the photon energy range of 21

12.
J Chem Phys ; 127(4): 044312, 2007 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-17672695

RESUMO

Vibrationally resolved photoelectron spectroscopy of the CF4+ (D 2A1) state is studied for the first time over an extended energy range, 26.5

13.
J Chem Phys ; 126(24): 244309, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17614551

RESUMO

The authors report a fully vibrationally resolved photoelectron spectroscopy investigation of a nonplanar molecule studied over a range of excitation energies. Experimental results for all four fundamental vibrational modes are presented. In each case significant non-Franck-Condon effects are seen. The vibrational branching ratio for the totally symmetric mode nu1+ is found to be strongly affected by resonant excitation in the SiF4+ (D2A1) photoionization channel. This is shown to be the result of two distinct shape resonances, which for the first time have been both confirmed by theoretical calculations. Vibrationally resolved Schwinger photoionization calculations are used to understand the vibronic coupling for the photoelectrons, both using ab initio and harmonic vibrational wave functions.

14.
J Chem Phys ; 125(16): 164316, 2006 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17092082

RESUMO

Evidence is presented demonstrating that an electron launched into the continuum is trapped in an unprecedented quasibound state, namely, one that extends through the backbone of the six-member carbon ring of C6F6. The mode specificity of the vibrational sensitivity to the electron trapping provides an experimental signature for this phenomenon, while adiabatic static model-exchange scattering calculations are used to map the wave function, which corroborate the interpretation.

15.
J Chem Phys ; 123(1): 014307, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16035835

RESUMO

Vibrationally resolved photoelectron spectroscopy of the N2O+(A 2Sigma+) state is used to compare the dependence of the photoelectron dynamics on molecular geometry for two shape resonances in the same ionization channel. Spectra are acquired over the photon energy range of 18< or =hv< or =55 eV. There are three single-channel resonances in this range, two in the 7sigma-->ksigma channel and one in the 7sigma-->kpi channel. Vibrational branching ratio curves are determined by measuring vibrationally resolved photoelectron spectra as a function of photon energy, and theoretical branching ratio curves are generated via Schwinger variational scattering calculations. In the region 30< or =hv< or =40 eV, there are two shape resonances (ksigma and kpi). The ksigma ionization resonance is clearly visible in vibrationally resolved measurements at hv=35 eV, even though the total cross section in this channel is dwarfed by the cross section in the degenerate, more slowly varying 7sigma-->kpi channel. This ksigma resonance is manifested in non-Franck-Condon behavior in the approximately antisymmetric v3 stretching mode, but it is not visible in the branching ratio curve for the approximately symmetric v1 stretch. The behavior of the 35-eV ksigma resonance is compared to a previously studied N2O 7sigma-->ksigma shape resonance at lower energy. The mode sensitivity of the 35-eV ksigma resonance is the opposite of what was observed for the lower-energy resonance. The contrasting mode-specific behavior observed for the high- and low-energy 7sigma-->ksigma resonances can be explained on the basis of the "approximate" symmetry of the quasibound photoelectron resonant wave function, and the contrasting behavior reflects differences in the continuum electron trapping. An examination of the geometry dependence of the photoelectron dipole matrix elements shows that the ksigma resonances have qualitatively different dependences on the individual bond lengths. The low-energy resonance is influenced only by changes in the end-to-end length of the molecule, whereas the higher-energy resonance depends on the individual N-N and N-O bond lengths. Branching ratios are determined for several vibrational levels, including the symmetry-forbidden bending mode, and all of the observed behavior is explained in the context of an independent particle, Born-Oppenheimer framework.

16.
J Chem Phys ; 122(6): 064308, 2005 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-15740373

RESUMO

Vibrationally resolved photoelectron spectroscopy of the CS(2) (+)(B (2)Sigma(u) (+)) state is used to show how nontotally symmetric vibrations "activate" a forbidden electronic transition in the photoionization continuum, specifically, a 5sigma(u)-->ksigma(u) shape resonance, that would be inaccessible in the absence of a symmetry breaking vibration. This electronic channel is forbidden owing to inversion symmetry selection rules, but it can be accessed when a nonsymmetric vibration is excited, such as bending or antisymmetric stretching. Photoelectron spectra are acquired for photon energies 17kpi(g), influences the symmetric stretch branching ratio. All of the observed effects can be understood within the framework of the Chase adiabatic approximation, i.e., the Born-Oppenheimer approximation applied to photoionization.

17.
J Chem Phys ; 120(2): 612-22, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267895

RESUMO

Using high-resolution photoelectron spectroscopy, we have determined the energy dependent vibrational branching ratios for the symmetric stretch [v+ = (100)], bend [v+ = (010)], and antisymmetric stretch [v+ = (001)], as well as several overtones and combination bands in the 4sigmag(-1) photoionization of CO2. Data were acquired over the range from 20-110 eV, and this wide spectral coverage highlighted that alternative vibrational modes exhibit contrasting behavior, even over a range usually considered to be dominated by atomic effects. Alternative vibrational modes exhibit qualitatively distinct energy dependences, and this contrasting mode-specific behavior underscores the point that vibrationally resolved measurements reflect the sensitivity of the electron scattering dynamics to well-defined changes in molecular geometry. In particular, such energy-dependent studies help to elucidate the mechanism(s) responsible for populating the symmetry forbidden vibrational levels [i.e., v+ =( 010), (001), (030), and (110)]. This is the first study in which vibrationally resolved data have been acquired as a function of energy for all of the vibrational modes of a polyatomic system. Theoretical Schwinger variational calculations are used to interpret the experimental data, and they indicate that a 4sigmag-->ksigmau shape resonance is responsible for most of the excursions observed for the vibrational branching ratios. Generally, the energy dependent trends are reproduced well by theory, but a notable exception is the symmetric stretch vibrational branching ratio. The calculated results display a strong peak in the vibrational branching ratio while the experimental data show a pronounced minimum. This suggests an interference mechanism that is not accounted for in the single-channel adiabatic-nuclei calculations. Electronic branching ratios were also measured and compared to the vibrational branching ratios to assess the relative contributions of interchannel (i.e., Herzberg-Teller) versus intrachannel (i.e., photoelectron-mediated) coupling.


Assuntos
Dióxido de Carbono/química , Dióxido de Carbono/efeitos da radiação , Modelos Químicos , Modelos Moleculares , Fotoquímica/métodos , Simulação por Computador , Elétrons , Íons/química , Íons/efeitos da radiação , Luz , Doses de Radiação , Espalhamento de Radiação
18.
J Chem Phys ; 120(2): 778-80, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267913

RESUMO

We report results of experimental and theoretical studies of the vibrational branching ratios for CO 4sigma(-1) photoionization from 20 to 185 eV. Comparison with results for the 2sigma(u)(-1) channel of the isoelectronic N2 molecule shows the branching ratios for these two systems to be qualitatively different due to the underlying scattering dynamics: CO has a shape resonance at low energy but lacks a Cooper minimum at higher energies whereas the situation is reversed for N2.

19.
Phys Rev Lett ; 92(14): 143002, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15089534

RESUMO

Vibrationally resolved photoelectron spectroscopy and Schwinger calculations are used to characterize a new resonance phenomenon in the 5sigma(u)-->ksigma(u) photoionization of CS2. This resonant channel is symmetry forbidden, yet is observable because it is activated by the antisymmetric stretching vibration. In addition, we show that a Franck-Condon breakdown occurs even though the energy dependence of the cross section is insensitive to geometry changes, which is unprecedented in photoionization.

20.
Environ Sci Technol ; 37(5): 931-5, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12666923

RESUMO

The reaction of 2-chlorophenol on Cu(II)O at 375 degrees C is studied using X-ray absorption near edge structure (XANES) spectroscopy. A mixture of copper(II) oxide and silica is prepared to serve as a surrogate for fly ash in combustion systems. 2-Chlorophenol is utilized as a model precursor for formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F). The Cu K-edge spectra shiftto lower binding energy, reflecting the reduction of the copper. The substrate is found to form a mixture of Cu(II), Cu(I), and Cu(O), with the dominant species being Cu(I). The data are fitted well with a first-order reaction scheme, with a time constant at 375 degrees C of 76 s. This is the first application of XANES spectroscopy for studying the kinetics and mechanism of heterogeneous reactions relevant to combustion processes, and the results demonstrate the utility and desirability of such X-ray spectroscopic studies.


Assuntos
Benzofuranos/química , Clorofenóis/química , Cobre/química , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/química , Poluentes do Solo/análise , Poluentes Atmosféricos/análise , Dibenzofuranos Policlorados , Cinética , Oxirredução , Análise Espectral , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...