Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007346

RESUMO

Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon usage suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.

2.
BMC Ecol Evol ; 24(1): 41, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556874

RESUMO

BACKGROUND: Several studies suggested that cavefish populations of Astyanax mexicanus settled during the Late Pleistocene. This implies that the cavefish's most conspicuous phenotypic changes, blindness and depigmentation, and more cryptic characters important for cave life, evolved rapidly. RESULTS: Using the published genomes of 47 Astyanax cavefish from la Cueva de El Pachón, El Sótano de la Tinaja, La Cueva Chica and El Sótano de Molino, we searched for putative loss-of-function mutations in previously defined sets of genes, i.e., vision, circadian clock and pigmentation genes. Putative non-functional alleles for four vision genes were identified. Then, we searched genome-wide for putative non-functional alleles in these four cave populations. Among 512 genes with segregating putative non-functional alleles in cavefish that are absent in surface fish, we found an enrichment in visual perception genes. Among cavefish populations, different levels of shared putative non-functional alleles were found. Using a subset of 12 genes for which putative loss-of-function mutations were found, we extend the analysis of shared pseudogenes to 11 cave populations. Using a subset of six genes for which putative loss-of-function mutations were found in the El Sótano del Toro population, where extensive hybridization with surface fish occurs, we found a correlation between the level of eye regression and the amount of putative non-functional alleles. CONCLUSIONS: We confirm that very few putative non-functional alleles are present in a large set of vision genes, in accordance with the recent origin of Astyanax mexicanus cavefish. Furthermore, the genome-wide analysis indicates an enrichment of putative loss-of-function alleles in genes with vision-related GO-terms, suggesting that visual perception may be the function chiefly impacted by gene losses related to the shift from a surface to a cave environment. The geographic distribution of putative loss-of-function alleles newly suggests that cave populations from Sierra de Guatemala and Sierra de El Abra share a common origin, albeit followed by independent evolution for a long period. It also supports that populations from the Micos area have an independent origin. In El Sótano del Toro, the troglomorphic phenotype is maintained despite massive introgression of the surface genome.


Assuntos
Characidae , Animais , Alelos , Characidae/genética , Mutação , Cegueira/genética , Visão Ocular
3.
Nat Commun ; 15(1): 1421, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360851

RESUMO

Chemoreception - the ability to smell and taste - is an essential sensory modality of most animals. The number and type of chemical stimuli that animals can perceive depends primarily on the diversity of chemoreceptors they possess and express. In vertebrates, six families of G protein-coupled receptors form the core of their chemosensory system, the olfactory/pheromone receptor gene families OR, TAAR, V1R and V2R, and the taste receptors T1R and T2R. Here, we study the vertebrate chemoreceptor gene repertoire and its evolutionary history. Through the examination of 1,527 vertebrate genomes, we uncover substantial differences in the number and composition of chemoreceptors across vertebrates. We show that the chemoreceptor gene families are co-evolving, highly dynamic, and characterized by lineage-specific expansions (for example, OR in tetrapods; TAAR, T1R in teleosts; V1R in mammals; V2R, T2R in amphibians) and losses. Overall, amphibians, followed by mammals, are the vertebrate clades with the largest chemoreceptor repertoires. While marine tetrapods feature a convergent reduction of chemoreceptor numbers, the number of OR genes correlates with habitat in mammals and birds and with migratory behavior in birds, and the taste receptor repertoire correlates with diet in mammals and with aquatic environment in fish.


Assuntos
Evolução Molecular , Receptores Odorantes , Animais , Filogenia , Vertebrados/genética , Peixes/genética , Mamíferos , Receptores Odorantes/genética
4.
Zool Res ; 44(4): 701-711, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37313847

RESUMO

The sizes of Astyanax mexicanus blind cavefish populations of North-East Mexico are demographic parameters of great importance for investigating a variety of ecological, evolutionary, and conservation issues. However, few estimates have been obtained. For these mobile animals living in an environment difficult to explore as a whole, methods based on capture-mark-recapture are appropriate, but their feasibility and interpretation of results depend on several assumptions that must be carefully examined. Here, we provide evidence that minimally invasive genetic identification from captures at different time intervals (three days and three years) can give insights into cavefish population size dynamics as well as other important demographic parameters of interest. We also provide tools to calibrate sampling and genotyping efforts necessary to reach a given level of precision. Our results suggest that the El Pachón cave population is currently very small, of an order of magnitude of a few hundreds of individuals, and is distributed in a relatively isolated area. The probable decline in population size in the El Pachón cave since the last census in 1971 raises serious conservation issues.


Assuntos
Cavernas , Peixes , Animais , Evolução Biológica , Densidade Demográfica , Peixes/genética
5.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36971115

RESUMO

Cartilaginous fishes are renowned for a keen sense of smell, a reputation based on behavioral observations and supported by the presence of large and morphologically complex olfactory organs. At the molecular level, genes belonging to the four families coding for most olfactory chemosensory receptors in other vertebrates have been identified in a chimera and a shark, but it was unknown whether they actually code for olfactory receptors in these species. Here, we describe the evolutionary dynamics of these gene families in cartilaginous fishes using genomes of a chimera, a skate, a sawfish, and eight sharks. The number of putative OR, TAAR, and V1R/ORA receptors is very low and stable, whereas the number of putative V2R/OlfC receptors is higher and much more dynamic. In the catshark Scyliorhinus canicula, we show that many V2R/OlfC receptors are expressed in the olfactory epithelium in the sparsely distributed pattern characteristic for olfactory receptors. In contrast, the other three vertebrate olfactory receptor families are either not expressed (OR) or only represented with a single receptor (V1R/ORA and TAAR). The complete overlap of markers of microvillous olfactory sensory neurons with pan-neuronal marker HuC in the olfactory organ suggests the same cell-type specificity of V2R/OlfC expression as for bony fishes, that is, in microvillous neurons. The relatively low number of olfactory receptors in cartilaginous fishes compared with bony fishes could be the result of an ancient and constant selection in favor of a high olfactory sensitivity at the expense of a high discrimination capability.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Tubarões , Órgão Vomeronasal , Animais , Receptores Odorantes/metabolismo , Olfato/fisiologia , Órgão Vomeronasal/metabolismo , Tubarões/genética , Tubarões/metabolismo , Filogenia , Vertebrados/genética , Peixes/genética
6.
BMC Biol ; 20(1): 195, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050670

RESUMO

BACKGROUND: Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) coding for olfactory receptors in 185 species of ray-finned fishes. RESULTS: The large variation in the number of functional genes, between 28 in the ocean sunfish Mola mola and 1317 in the reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, Polypteriformes, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish. CONCLUSIONS: We document a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications, and reacquisitions.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Evolução Molecular , Peixes/anatomia & histologia , Peixes/genética , Genoma , Filogenia , Receptores Odorantes/genética
7.
Mol Biol Evol ; 38(9): 3742-3753, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33950257

RESUMO

Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. Richness of the olfactory repertoire depends on the diversity of receptors coded by homologous genes classified into four families: OR, TAAR, VR1, and VR2. Herein, we focus on the OR gene repertoire. While independent large contractions of the OR gene repertoire associated with ecological transitions have been found in mammals, little is known about the diversity of the OR gene repertoire and its evolution in teleost fishes, a group that includes more than 34,000 living species. We analyzed genomes of 163 species representing diversity in this large group. We found a large range of variation in the number of functional OR genes, from 15 in the Broad-nose Pipefish Syngnathus typhle and the Ocean Sunfish Mola mola, to 429 in the Zig-zag Eel Mastacembelus armatus. The number of OR genes was higher in species when a multilamellar olfactory rosette was present. Moreover, the number of lamellae was correlated with the richness of the OR gene repertoire. While a slow and balanced birth-and-death process generally drives the evolution of the OR gene repertoire, we inferred several episodes of high rates of gene loss, sometimes followed by large gains in the number of OR genes. These gains coincide with morphological changes of the olfactory organ and suggest a strong functional association between changes in the morphology and the evolution of the OR gene repertoire.


Assuntos
Evolução Molecular , Receptores Odorantes , Animais , Peixes/genética , Humanos , Mamíferos , Mucosa Olfatória , Filogenia , Receptores Odorantes/genética
8.
Mol Biol Evol ; 38(2): 589-605, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32986833

RESUMO

Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.


Assuntos
Relógios Circadianos/genética , Peixes/genética , Mutação com Perda de Função , Toupeiras/genética , Pigmentação/genética , Visão Ocular/genética , Animais , Cavernas , Pseudogenes , Seleção Genética , Peixe-Zebra
9.
Med Sci (Paris) ; 35(3): 245-251, 2019 Mar.
Artigo em Francês | MEDLINE | ID: mdl-30931909

RESUMO

Alfred H. Sturtevant was the first to raise the question: why does the mutation rate not become reduced to zero? Indeed, most new mutations with a phenotypic effect are deleterious. Therefore, individuals who produce less mutants produce more viable and fertile offspring. Consequently, natural selection should increase the frequency of antimutator genotypes and progressively reduce the mutation rate to zero. However, no species has ever been found with a mutation rate equal to zero. Recent analyses suggest that setting the mutation rate above zero depends mainly on the effective size of the genome and the effective population size. The mutation rate is a trade-off between natural selection that operates to improve replication fidelity and the random genetic drift that sets the ultimate lower limit. This trade off illustrates the limitation of the power of natural selection in a world where natural populations have a finite size.


Assuntos
Evolução Molecular , Taxa de Mutação , Animais , Drosophila/genética , Genes Letais/fisiologia , Deriva Genética , Humanos , Relação entre Gerações , Modelos Genéticos , Mutação/fisiologia , Seleção Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...