Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 37, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654375

RESUMO

BACKGROUND: Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS: In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS: We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-ß plaques in vivo in a model of AD. CONCLUSIONS: This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.


Assuntos
Doença de Alzheimer , Microglia , Oligonucleotídeos Antissenso , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Oligonucleotídeos Antissenso/farmacologia , Animais , Camundongos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Animais de Doenças
2.
Eur J Pharmacol ; 931: 175189, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987255

RESUMO

BACKGROUND: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD: In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS: Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION: Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios/metabolismo , Ratos , Convulsões/induzido quimicamente , Convulsões/metabolismo , Transmissão Sináptica
3.
Front Mol Neurosci ; 14: 714768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349622

RESUMO

Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.

4.
Genes (Basel) ; 13(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35052379

RESUMO

With the ongoing demographic shift towards increasingly elderly populations, it is estimated that approximately 150 million people will live with Alzheimer's disease (AD) by 2050. By then, AD will be one of the most burdensome diseases of this and potentially next centuries. Although its exact etiology remains elusive, both environmental and genetic factors play crucial roles in the mechanisms underlying AD neuropathology. Genome-wide association studies (GWAS) identified genetic variants associated with AD susceptibility in more than 40 different genomic loci. Most of these disease-associated variants reside in non-coding regions of the genome. In recent years, it has become clear that functionally active transcripts arise from these non-coding loci. One type of non-coding transcript, referred to as long non-coding RNAs (lncRNAs), gained significant attention due to their multiple roles in neurodevelopment, brain homeostasis, aging, and their dysregulation or dysfunction in neurological diseases including in AD. Here, we will summarize the current knowledge regarding genetic variations, expression profiles, as well as potential functions, diagnostic or therapeutic roles of lncRNAs in AD. We postulate that lncRNAs may represent the missing link in AD pathology and that unraveling their role may open avenues to better AD treatments.


Assuntos
Doença de Alzheimer/genética , RNA Longo não Codificante/genética , Envelhecimento/genética , Animais , Encéfalo/patologia , Estudo de Associação Genômica Ampla/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...