Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Bioengineering (Basel) ; 11(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38391658

RESUMO

This study on occupational back-support exoskeletons performs a laboratory evaluation of realistic tasks with expert workers from the railway sector. Workers performed both a static task and a dynamic task, each involving manual material handling (MMH) and manipulating loads of 20 kg, in three conditions: without an exoskeleton, with a commercially available passive exoskeleton (Laevo v2.56), and with the StreamEXO, an active back-support exoskeleton developed by our institute. Two control strategies were defined, one for dynamic tasks and one for static tasks, with the latter determining the upper body's gravity compensation through the Model-based Gravity Compensation (MB-Grav) approach. This work presents a comparative assessment of the performance of active back support exoskeletons versus passive exoskeletons when trialled in relevant and realistic tasks. After a lab characterization of the MB-Grav strategy, the experimental assessment compared two back-support exoskeletons, one active and one passive. The results showed that while both devices were able to reduce back muscle activation, the benefits of the active device were triple those of the passive system regarding back muscle activation (26% and 33% against 9% and 11%, respectively), while the passive exoskeleton hindered trunk mobility more than the active mechanism.

3.
Wearable Technol ; 2: e12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486626

RESUMO

Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.

4.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 2053-2062, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32746325

RESUMO

Selecting actuators for assistive exoskeletons involves decisions in which designers usually face contrasting requirements. While certain choices may depend on the application context or design philosophy, it is generally desirable to avoid oversizing actuators in order to obtain more lightweight and transparent systems, ultimately promoting the adoption of a given device. In many cases, the torque and power requirements can be relaxed by exploiting the contribution of an elastic element acting in mechanical parallel. This contribution considers one such case and introduces a methodology for the evaluation of different actuator choices resulting from the combination of different motors, reduction gears, and parallel stiffness profiles, helping to match actuator capabilities to the task requirements. Such methodology is based on a graphical tool showing how different design choices affect the actuator as a whole. To illustrate the approach, a back-support exoskeleton for lifting tasks is considered as a case study.


Assuntos
Exoesqueleto Energizado , Desenho de Equipamento , Humanos , Aparelhos Ortopédicos , Torque
5.
Front Robot AI ; 7: 579963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501340

RESUMO

Occupational back-support exoskeletons are becoming a more and more common solution to mitigate work-related lower-back pain associated with lifting activities. In addition to lifting, there are many other tasks performed by workers, such as carrying, pushing, and pulling, that might benefit from the use of an exoskeleton. In this work, the impact that carrying has on lower-back loading compared to lifting and the need to select different assistive strategies based on the performed task are presented. This latter need is studied by using a control strategy that commands for constant torques. The results of the experimental campaign conducted on 9 subjects suggest that such a control strategy is beneficial for the back muscles (up to 12% reduction in overall lumbar activity), but constrains the legs (around 10% reduction in hip and knee ranges of motion). Task recognition and the design of specific controllers can be exploited by active and, partially, passive exoskeletons to enhance their versatility, i.e., the ability to adapt to different requirements.

6.
IEEE Int Conf Rehabil Robot ; 2019: 559-564, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374689

RESUMO

Despite the growing interest, the adoption of industrial exoskeletons may still be held back by technical limitations. To enhance versatility and promote adoption, one aspect of interest could be represented by the potential of active and quasi-passive devices to automatically distinguish different activities and adjust their assistive profiles accordingly. This contribution focuses on an active back-support exoskeleton and extends previous work proposing the use of a Support Vector Machine to classify walking, bending and standing. Thanks to the introduction of a new feature-forearm muscle activity-this study shows that it is possible to perform reliable online classification. As a consequence, the authors introduce a new hierarchically-structured controller for the exoskeleton under analysis.


Assuntos
Exoesqueleto Energizado , Processamento de Sinais Assistido por Computador , Posição Ortostática , Máquina de Vetores de Suporte , Caminhada , Humanos , Aparelhos Ortopédicos
7.
Sensors (Basel) ; 17(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023365

RESUMO

Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.


Assuntos
Articulação do Tornozelo/fisiologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Articulação do Joelho/fisiologia , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Feminino , Humanos , Masculino , Movimento , Amplitude de Movimento Articular , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...