Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 32(2): 024002, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32957094

RESUMO

Thermal and concentrated solar solid-state converters are devices with no moving parts, corresponding to long lifetimes, limited necessity of maintenance, and scalability. Among the solid-state converters, the thermionic-based devices are attracting an increasing interest in the specific growing sector of energy conversion performed at high-temperature. During the last 10 years, hybrid thermionic-based concepts, conceived to cover operating temperatures up to 2000 °C, have been intensively developed. In this review, the thermionic-thermoelectric, photon-enhanced thermionic emission, thermionic-photovoltaic energy converters are extensively discussed. The design and development processes as well as the tailoring of the properties of nanostructured materials performed by the authors are comprehensively described and compared with the advances achieved by the international scientific community.

2.
J Nanosci Nanotechnol ; 17(3): 1564-570, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-29693353

RESUMO

Zinc antimonide (ZnSb) is a promising thermoelectric material for the temperature range 300­ 600 K. ZnSb thin films were prepared by nanosecond Pulsed Laser Deposition (PLD) to evaluate the performance of nanostructured films for thermoelectric conversion by the determination of the Power Factor. A study of the influence of structural, compositional and thermoelectric properties of thin films is reported as a function of different deposition parameters, such as repetition rate, pulse energy, and substrate temperature. The evaluation of a thin film ZnSb compound with excess Sb has been performed to verify the variation of the thermoelectric properties. The obtained results are reported and discussed in the 300­600 K temperature range.

3.
ACS Appl Mater Interfaces ; 4(2): 694-701, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22206356

RESUMO

The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...