Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 100: 103072, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503809

RESUMO

The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.


Assuntos
Crassostrea/fisiologia , Aquecimento Global , Tolerância ao Sal , Animais , Biomassa , Crassostrea/crescimento & desenvolvimento , Golfo do México , Termotolerância
2.
Integr Environ Assess Manag ; 13(2): 431-443, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27249782

RESUMO

The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC.


Assuntos
Baías , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Água do Mar/análise , Modelos Teóricos , Texas , Áreas Alagadas
3.
Environ Sci Technol ; 49(6): 3401-9, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25688581

RESUMO

More than four decades of alkalinity and pH data (late 1960s to 2010) from coastal bays along the northwestern Gulf of Mexico were analyzed for temporal changes across a climatic gradient of decreasing rainfall and freshwater inflow, from northeast to southwest. The majority (16 out of 27) of these bays (including coastal waters) showed a long-term reduction in alkalinity at a rate of 3.0-21.6 µM yr(-1). Twenty-two bays exhibited pH decreases at a rate of 0.0014-0.0180 yr(-1). In contrast, a northernmost coastal bay exhibited increases in both alkalinity and pH. Overall, the two rates showed a significant positive correlation, indicating that most of these bays, especially those at lower latitudes, have been experiencing long-term acidification. The observed alkalinity decrease may be caused by reduced riverine alkalinity export, a result of precipitation decline under drought conditions, and freshwater diversion for human consumption, as well as calcification in these bays. A decrease in alkalinity inventory and accompanying acidification may have negative impacts on shellfish production in these waters. In addition, subsequent reduction in alkalinity export from these bays to the adjacent coastal ocean may also decrease the buffer capacity of the latter against future acidification.


Assuntos
Estuários , Baías , Monitoramento Ambiental/métodos , Água Doce , Golfo do México , Humanos , Concentração de Íons de Hidrogênio , Chuva , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...