Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 203(5): 551-561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635366

RESUMO

AbstractSocial behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how developmental IGEs, which describe the effects of a prior social partner's genotype on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be estimated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the experiment, we measured aggressive behavior in 15 genotypic pairings (n=600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found contextual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner's genotype on the focal individual's day 2 behavior depended on the genotypic identity of both the day 1 partner and the focal male. Importantly, the developmental IGEs in our system produced fundamentally different dynamics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence demonstrating developmental IGEs, a first step toward incorporating developmental IGEs into our understanding of behavioral evolution.


Assuntos
Agressão , Drosophila melanogaster , Humanos , Animais , Masculino , Drosophila melanogaster/genética , Genótipo , Variação Genética , Comportamento Social
2.
Trends Ecol Evol ; 37(3): 233-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802715

RESUMO

Following rapid environmental change, why do some animals thrive, while others struggle? We present an expanded, cue-response framework for predicting variation in behavioral responses to novel situations. We show how signal detection theory can be used when individuals have three behavioral options (approach, avoid, or ignore). Based on this theory, we outline predictions about which animals are more likely to make mistakes around novel conditions (i.e., fall for a trap or fail to use an undervalued resource) and the intensity of that mismatch (i.e., severe versus moderate). Explicitly considering three options provides a more holistic perspective and allows us to distinguish between severe and moderate traps, which could guide management strategies in a changing world.


Assuntos
Evolução Biológica , Animais
3.
Biol Rev Camb Philos Soc ; 94(5): 1761-1773, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31134728

RESUMO

Animal movements are important drivers of nutrient redistribution that can affect primary productivity and biodiversity across various spatial scales. Recent work indicates that incorporating these movements into ecosystem models can enhance our ability to predict the spatio-temporal distribution of nutrients. However, the role of animal behaviour in animal-mediated nutrient transport (i.e. active subsidies) remains under-explored. Here we review the current literature on active subsidies to show how the behaviour of active subsidy agents makes them both ecologically important and qualitatively distinct from abiotic processes (i.e. passive subsidies). We first propose that animal movement patterns can create similar ecological effects (i.e. press and pulse disturbances) in recipient ecosystems, which can be equal in magnitude to or greater than those of passive subsidies. We then highlight three key behavioural features distinguishing active subsidies. First, organisms can transport nutrients counter-directionally to abiotic forces and potential energy gradients (e.g. upstream). Second, unlike passive subsidies, organisms respond to the patterns of nutrients that they generate. Third, animal agents interact with each other. The latter two features can form positive- or negative-feedback loops, creating patterns in space or time that can reinforce nutrient hotspots in places of mass aggregations and/or create lasting impacts within ecosystems. Because human-driven changes can affect both the space-use of active subsidy species and their composition at both population (i.e. individual variation) and community levels (i.e. species interactions), predicting patterns in nutrient flows under future modified environmental conditions depends on understanding the behavioural mechanisms that underlie active subsidies and variation among agents' contributions. We conclude by advocating for the integration of animal behaviour, animal movement data, and individual variation into future conservation efforts in order to provide more accurate and realistic assessments of changing ecosystem function.


Assuntos
Comportamento Animal/fisiologia , Nutrientes/fisiologia , Animais , Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Florestas , Insetos Vetores/fisiologia , Lagos , Nutrientes/provisão & distribuição , Oceanos e Mares , Rios , Fatores de Tempo , Vento
4.
Curr Zool ; 63(2): 205-212, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29491978

RESUMO

Urban-dwelling birds have the potential to serve as powerful biomonitors that reveal the impact of environmental change due to urbanization. Specifically, urban bird populations can be used to survey cities for factors that may pose both public and wildlife health concerns. Here, we review evidence supporting the use of avian biomonitors to identify threats associated with urbanization, including bioaccumulation of toxicants and the dysregulation of behavior and physiology by related stressors. In addition, we consider the use of birds to examine how factors in the urban environment can impact immunity against communicable pathogens. By studying the behavior, physiology, and ecology of urban bird populations, we can elucidate not only how avian populations are responding to environmental change, but also how unintended consequences of urbanization affect the well-being of human and non-human inhabitants.

5.
Biol Lett ; 11(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26179800

RESUMO

Cooperative alliances among kin may not only lead to indirect fitness benefits for group-living species, but can also provide direct benefits through access to mates or higher social rank. However, the immigrant sex in most species loses any potential benefits of living with kin unless immigrants disperse together or recruit relatives into the group in subsequent years. To look for evidence of small subgroups of related immigrants within social groups (kin substructure), we used microsatellites to assess relatedness between immigrant females of the cooperatively breeding superb starling, Lamprotornis superbus. We determined how timing of immigration led to kin subgroup formation and if being part of one influenced female fitness. Although mean relatedness in groups was higher for males than females, 26% of immigrant females were part of a kin subgroup with a sister. These immigrant sibships formed through kin recruitment across years more often than through coalitions immigrating together in the same year. Furthermore, females were more likely to breed when part of a kin subgroup than when alone, suggesting that female siblings form alliances that may positively influence their fitness. Ultimately, kin substructure should be considered when determining the role of relatedness in the evolution of animal societies.


Assuntos
Comportamento Cooperativo , Estorninhos/fisiologia , Migração Animal , Animais , Feminino , Masculino , Repetições de Microssatélites , Comportamento de Nidação , Reprodução/fisiologia , Comportamento Sexual Animal , Comportamento Social , Estorninhos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...