Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4633, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604921

RESUMO

The dorsal raphe (DR) is a heterogeneous nucleus containing dopamine (DA), serotonin (5HT), γ-aminobutyric acid (GABA) and glutamate neurons. Consequently, investigations of DR circuitry require Cre-driver lines that restrict transgene expression to precisely defined cell populations. Here, we present a systematic evaluation of mouse lines targeting neuromodulatory cells in the DR. We find substantial differences in specificity between lines targeting DA neurons, and in penetrance between lines targeting 5HT neurons. Using these tools to map DR circuits, we show that populations of neurochemically distinct DR neurons are arranged in a stereotyped topographical pattern, send divergent projections to amygdala subnuclei, and differ in their presynaptic inputs. Importantly, targeting DR DA neurons using different mouse lines yielded both structural and functional differences in the neural circuits accessed. These results provide a refined model of DR organization and support a comparative, case-by-case evaluation of the suitability of transgenic tools for any experimental application.


Assuntos
Núcleo Dorsal da Rafe/fisiologia , Modelos Animais , Neurotransmissores/genética , Animais , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais , Neurônios Serotoninérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
2.
Nat Neurosci ; 22(4): 657-668, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886408

RESUMO

The local and long-range connectivity of cortical neurons are considered instrumental to the functional repertoire of the cortical region in which they reside. In cortical networks, distinct cell types build local circuit structures enabling computational operations. Computations in the medial prefrontal cortex (mPFC) are thought to be central to cognitive operation, including decision-making and memory. We used a retrograde trans-synaptic rabies virus system to generate brain-wide maps of the input to excitatory neurons as well as three inhibitory interneuron subtypes in the mPFC. On the global scale the input patterns were found to be mainly cell type independent, with quantitative differences in key brain regions, including the basal forebrain. Mapping of the local mPFC network revealed high connectivity between the different subtypes of interneurons. The connectivity mapping gives insight into the information that the mPFC processes and the structural architecture underlying the mPFC's unique functions.


Assuntos
Encéfalo/citologia , Interneurônios/citologia , Córtex Pré-Frontal/citologia , Animais , Atlas como Assunto , Neurônios Colinérgicos/citologia , Feminino , Vetores Genéticos , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Vírus da Raiva/genética
3.
Neuron ; 101(1): 133-151.e7, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503173

RESUMO

Ventral tegmental area (VTA) dopamine (DA) neurons play a central role in mediating motivated behaviors, but the circuitry through which they signal positive and negative motivational stimuli is incompletely understood. Using in vivo fiber photometry, we simultaneously recorded activity in DA terminals in different nucleus accumbens (NAc) subnuclei during an aversive and reward conditioning task. We find that DA terminals in the ventral NAc medial shell (vNAcMed) are excited by unexpected aversive outcomes and to cues that predict them, whereas DA terminals in other NAc subregions are persistently depressed. Excitation to reward-predictive cues dominated in the NAc lateral shell and was largely absent in the vNAcMed. Moreover, we demonstrate that glutamatergic (VGLUT2-expressing) neurons in the lateral hypothalamus represent a key afferent input for providing information about aversive outcomes to vNAcMed-projecting DA neurons. Collectively, we reveal the distinct functional contributions of separate mesolimbic DA subsystems and their afferent pathways underlying motivated behaviors. VIDEO ABSTRACT.


Assuntos
Aprendizagem da Esquiva/fisiologia , Neurônios Dopaminérgicos/metabolismo , Sistema Límbico/metabolismo , Rede Nervosa/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Sistema Límbico/citologia , Masculino , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/citologia , Técnicas de Cultura de Órgãos , Fotometria/métodos , Área Tegmentar Ventral/citologia , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese
4.
Neuron ; 83(3): 663-78, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25102561

RESUMO

The serotonin system is proposed to regulate physiology and behavior and to underlie mood disorders; nevertheless, the circuitry controlling serotonergic neurons remains uncharacterized. We therefore generated a comprehensive whole-brain atlas defining the monosynaptic inputs onto forebrain-projecting serotonergic neurons of dorsal versus median raphe based on a genetically restricted transsynaptic retrograde tracing strategy. We identified discrete inputs onto serotonergic neurons from forebrain and brainstem neurons, with specific inputs from hypothalamus, cortex, basal ganglia, and midbrain, displaying a greater than anticipated complexity and diversity in cell-type-specific connectivity. We identified and functionally confirmed monosynaptic glutamatergic inputs from prefrontal cortex and lateral habenula onto serotonergic neurons as well as a direct GABAergic input from striatal projection neurons. In summary, our findings emphasize the role of hyperdirect inputs to serotonergic neurons. Cell-type-specific classification of connectivity patterns will allow for further functional analysis of the diverse but specific inputs that control serotonergic neurons during behavior.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo , Animais , Mapeamento Encefálico , Pareamento Cromossômico/fisiologia , Camundongos , Tecido Nervoso/metabolismo , Vias Neurais/metabolismo , Neurônios Serotoninérgicos/metabolismo
5.
PLoS One ; 9(1): e83879, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454710

RESUMO

The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine--an NMDA receptor (NMDAR) antagonist--has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV) GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f) and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST). We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/metabolismo , Maleato de Dizocilpina/farmacologia , Interneurônios/metabolismo , Ketamina/farmacologia , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Preferências Alimentares/efeitos dos fármacos , Humanos , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Natação
6.
J Neurosci ; 33(4): 1678-83, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345240

RESUMO

The striatal microcircuitry consists of a vast majority of projection neurons, the medium spiny neurons (MSNs), and a small yet diverse population of interneurons. To understand how activity is orchestrated within the striatum, it is essential to unravel the functional connectivity between the different neuronal types. Fast-spiking (FS) interneurons provide feedforward inhibition to both direct and indirect pathway MSNs and are important in sculpting their output to downstream basal ganglia nuclei. FS interneurons are also interconnected with each other via electrical and chemical synapses; however, whether and how they inhibit other striatal interneuron types remains unknown. In this study we combined multineuron whole-cell recordings with optogenetics to determine the target selectivity of feedforward inhibition by striatal FS interneurons. Using transgenic and viral approaches we directed expression of channelrhodopsin 2 (ChR2) to FS interneurons to study their connectivity within the mouse striatal microcircuit. Optogenetic stimulation of ChR2-expressing FS interneurons generated strong and reliable GABA(A)-dependent synaptic inputs in MSNs. In sharp contrast, simultaneously recorded neighboring cholinergic interneurons did not receive any synaptic inputs from photostimulated FS cells, and a minority of low-threshold spiking (LTS) interneurons responded weakly. We further tested the synaptic connectivity between FS and LTS interneurons using paired recordings, which showed only sparse connectivity. Our results show that striatal FS interneurons form a feedforward inhibitory circuit that is target selective, inhibiting projection neurons while avoiding cholinergic interneurons and sparsely contacting LTS interneurons, thus supporting independent modulation of MSN activity by the different types of striatal interneurons.


Assuntos
Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Neostriado/fisiologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Animais , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp
7.
Ann Rheum Dis ; 72(5): 652-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22661643

RESUMO

OBJECTIVES: To increase understanding of the aetiology and pathogenesis of rheumatoid arthritis (RA), genetic and environmental risk factors for RA subsets, defined by the presence or absence of different anticitrullinated protein/peptide antibodies (ACPAs) targeting citrullinated peptides from α-enolase, vimentin, fibrinogen and collagen type II, were investigated. METHODS: 1985 patients with RA and 2252 matched controls from the EIRA case-control cohort were used in the study. Serum samples were assayed by ELISA for the presence of anticyclic citrullinated peptides (anti-CCP) antibodies and four different ACPA fine specificities. Cross-reactivity between ACPAs was examined by peptide absorption experiments. Genotyping was performed for HLA-DRB1 shared epitope (SE) alleles and the PTPN22 gene, while information regarding smoking was obtained by questionnaire. The association of genetic and environmental risk factors with different subsets of RA was calculated by logistic regression analysis. RESULTS: Limited cross-reactivity was observed between different ACPA fine specificities. In total, 17 RA subsets could be identified based on their different ACPA fine specificity profiles. Large differences in association with genetic and environmental determinants were observed between subsets. The strongest association of HLA-DRB1 SE, PTPN22 and smoking was identified for the RA subset which was defined by the presence of antibodies to citrullinated α-enolase and vimentin. CONCLUSION: This study provides the most comprehensive picture to date of how HLA-DRB1 SE, PTPN22 and smoking are associated with the presence of specific ACPA reactivities rather than anti-CCP levels. The new data will form a basis for molecular studies aimed at understanding disease development in serologically distinct subsets of RA.


Assuntos
Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Autoanticorpos/sangue , Citrulina/imunologia , Cadeias HLA-DRB1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Citrulina/metabolismo , Colágeno Tipo II/imunologia , Colágeno Tipo II/metabolismo , Reações Cruzadas/imunologia , Epitopos/genética , Fibrinogênio/imunologia , Fibrinogênio/metabolismo , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Genótipo , Humanos , Modelos Logísticos , Peptídeos/imunologia , Peptídeos/metabolismo , Fosfopiruvato Hidratase/imunologia , Fosfopiruvato Hidratase/metabolismo , Fatores de Risco , Estudos Soroepidemiológicos , Fumar/epidemiologia , Suécia/epidemiologia , Vimentina/imunologia , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...