Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
iScience ; 27(4): 109293, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38495824

RESUMO

The classic view of the lysosome as a static recycling center has been replaced with one of a dynamic and mobile hub of metabolic regulation. This revised view raises new questions about how dysfunction of this organelle causes pathology in inherited lysosomal disorders. Here we provide evidence for increased lysosomal exocytosis in the developing cartilage of three lysosomal disease zebrafish models with distinct etiologies. Dysregulated exocytosis was linked to altered cartilage development, increased activity of multiple cathepsin proteases, and cathepsin- and TGFß-mediated pathogenesis in these models. Moreover, inhibition of cathepsin activity or direct blockade of exocytosis with small molecule modulators improved the cartilage phenotypes, reinforcing a connection between excessive extracellular protease activity and cartilage pathogenesis. This study highlights the pathogenic consequences in early cartilage development arising from uncontrolled release of lysosomal enzymes via exocytosis, and suggests that pharmacological enhancement of this process could be detrimental during tissue development.

2.
Mol Genet Metab Rep ; 38: 101041, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234862

RESUMO

Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal storage disorder characterized by deficient activity of arylsulfatase B enzyme (ASB) resulting in cellular accumulation of dermatan sulfate (DS) and chondroitin sulfate (CS) that leads to cell injury. Urinary glycosaminoglycans (GAG) are often used as a biomarker in MPS diseases for diagnosis and to monitor treatment efficacy. This study evaluated leukocyte GAGs (leukoGAG) and skin GAGs as alternate biomarkers representing intracellular GAG changes in patients with MPS VI and treated with enzyme replacement therapy (ERT). In addition, we evaluated corneal opacification measurements (COM) and carotid intima media thickness (CIMT) as indicators of GAG accumulation and tissue injury. The study was performed in a serial two-step design in a single center. A quantitative method to measure leukoGAG levels in leukocytes was developed in Study 1 to compare the GAG levels between MPS VI patients and a control group and to assess correlations between leukoGAG and urineGAG. Study 2 validated the leukoGAG measurement, assessed the effect of ERT infusion on leukoGAG and ASB activity in leukocytes, identified correlations between leukoGAG and other biomarkers, and assessed differences in GAG accumulation between MPS VI patients and control subjects. In Study 1, leukoCS and leukoDS levels were significantly higher in the MPS VI group than the control group (leukoCS: 37.9 ± 10.2 and 2.9 ± 1.5 µg/µg protein, respectively, p = 0.005; leukoDS: 0.26 ± 0.2 and 0.0 ± 0.0 µg/µg protein, respectively, p = 0.028) with positive correlations between leukoCS and urine CS and leukoDS and urineDS. In Study 2, leukoCS (32.0 ± 11.8 vs 6.9 ± 3.1 µg/mg protein, p = 0.005) and leukoDS (0.4 ± 0.1 and 0.2 ± 0.1 µg/mg protein, p = 0.020) were significantly higher compared with control subjects. Thus, these results highlight the potential of leukoGAG as a new biomarker representing intracellular GAG accumulation in MPS VI patients and may be valuable for patient management.

3.
Mol Ther Nucleic Acids ; 34: 102022, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37727271

RESUMO

Free sialic acid storage disorders (FSASDs) result from pathogenic variations in the SLC17A5 gene, which encodes the lysosomal transmembrane protein sialin. Loss or deficiency of sialin impairs FSA transport out of the lysosome, leading to cellular dysfunction and neurological impairment, with the most severe form of FSASD resulting in death during early childhood. There are currently no therapies for FSASDs. Here, we evaluated the efficacy of CRISPR-Cas9-mediated homology directed repair (HDR) and adenine base editing (ABE) targeting the founder variant, SLC17A5 c.115C>T (p.Arg39Cys) in human dermal fibroblasts. We observed minimal correction of the pathogenic variant in HDR samples with a high frequency of undesired insertions/deletions (indels) and significant levels of correction for ABE-treated samples with no detectable indels, supporting previous work showing that CRISPR-Cas9-mediated ABE outperforms HDR. Furthermore, ABE treatment of either homozygous or compound heterozygous SLC17A5 c.115C>T human dermal fibroblasts demonstrated significant FSA reduction, supporting amelioration of disease pathology. Translation of this ABE strategy to mouse embryonic fibroblasts harboring the Slc17a5 c.115C>T variant in homozygosity recapitulated these results. Our study demonstrates the feasibility of base editing as a therapeutic approach for the FSASD variant SLC17A5 c.115C>T and highlights the usefulness of base editing in monogenic diseases where transmembrane protein function is impaired.

4.
Mol Genet Metab Rep ; 35: 100978, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275682

RESUMO

Mucolipidosis type II and III (MLII/III) is caused by defects in the mannose-6-phosphate system, which is essential to target most of the lysosomal hydrolases to the lysosome. MLII/III patients present with marked elevations in the activities of most lysosomal enzymes in plasma, but their profiles in dried blood spots (DBS) have not been well described. In the current study, we measured the activities of 12 lysosomal enzymes in DBS, among which acid sphingomyelinase, iduronate-2-sulfatase, and alpha-N-acetylglucosaminidase were significantly elevated in MLII/III patients when compared to random newborns. This sets the stage for using DBS to diagnose MLII/III. Furthermore, given an increasing number of lysosomal storage disorders are being included in the recommended uniform screening panel, our results also indicate that population-based newborn screening for MLII/III can be implemented with minimal efforts.

5.
Mol Genet Metab Rep ; 33: 100920, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245961

RESUMO

Mucopolysaccharidosis IVA or Morquio A syndrome is a rare lysosomal storage disorder caused by N-acetylgalactosamine-6-sulfatase deficiency. A diagnosis can be provided by the identification of reduced N-acetylgalactosamine-6-sulfatase activity as well as detection of compound heterozygous or homozygous pathogenic variants in GALNS. We present a case of two sisters of healthy non-consanguineous parents with a severe classical phenotype of Morquio A syndrome. Both patients were found to carry a novel homozygous deletion of exon 9, which was initially suspected by next generation sequencing (NGS) due to lack of coverage, but could not be confirmed by this methodology. Therefore, an allele specific polymerase chain reaction assay was designed to confirm the exon 9 deletion and determine the precise deletion breakpoints (c.899-397_1003-1862del) for our patients. Recognizing limitations of molecular testing is important to ensure proper diagnosis and subsequent treatment for individuals with Morquio A syndrome.

6.
Mol Genet Metab Rep ; 31: 100875, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782621

RESUMO

Morquio syndrome A (Mucopolysaccharidosis IVA, MPS IVA) is an autosomal recessive lysosomal storage disorder caused by deficiency of N-acetyl-galactosamine-6-sulfatase (GALNS) which catabolizes the glycosaminoglycans (GAG), keratan sulfate and chondroitin-6-sulfate. Homozygous or compound heterozygous pathogenic variants in the GALNS result in the deficiency of the enzyme and consequent GAG accumulations. DNA sequence and copy number analysis of the GALNS coding region fails to identify biallelic causative pathogenic variants in up to 15% of patients with Morquio syndrome A. RNA transcript analysis was performed to identify pathogenic alterations in two unrelated families with Morquio syndrome A in whom a single heterozygous or no pathogenic alteration was detected by standard analysis of the GALNS gene. RNA sequencing and quantitative expression analysis identified the overabundance of an aberrant GALNS transcript isoform and a reduction of the clinically relevant isoform (NM_000512.4) in the Morquio syndrome A patients from both families. The aberrant isoform (ENST00000568613.1) was produced by alternative splicing and contained intronic sequence that was likely a cryptic exon predicted to result in a reading frame shift and generation of a premature termination codon. These findings indicated that the aberrant splicing is likely the novel molecular defect in our patients. RNA transcript analysis could be useful to identify pathogenic alterations and increase the yield of molecular diagnosis in patients with Morquio syndrome A whose genetic variants are not found by standard sequencing or gene dosage analysis.

8.
Eur J Med Genet ; 64(12): 104365, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34637945

RESUMO

The etiology of secondary 3-methylglutaconic aciduria (3-MGA-uria) is not well understood although is thought to be a marker of mitochondrial dysfunction. For this reason, suspicion for a secondary 3-MGA-uria often leads to an extensive clinical and laboratory work-up for mitochondrial disease, although in many cases evidence for mitochondrial dysfunction is never found. 3-methylglutaconic aciduria in healthy individuals without known metabolic disease has not been well described. Here, we describe clinical and biochemical features of 23 individuals evaluated at the Greenwood Genetic Center for low plasma free carnitine reported on newborn screening. Of the 23 individuals evaluated, four individuals were diagnosed with primary carnitine deficiency, 16 were identified as carriers for primary carnitine deficiency, and three individuals were determined to be unaffected non-carriers based on molecular and biochemical testing. Elevated 3-MGA (>20 mmol/mol of creatinine) was identified in nine carriers of primary carnitine deficiency, while all unaffected non carriers and all affected individuals with primary carnitine deficiency had a normal 3-MGA level (<20 mmol/mol of creatinine). Average 3-MGA among all carriers was 39.66 mmol/mol of creatinine. Average plasma free carnitine in among all carriers (n = 16) was 13.87 µm/L, and average plasma free carnitine was not significantly different between carriers with and those without elevated 3-MGA (p = 0.66). In summary, we describe elevated 3-MGA as a discriminatory feature in nine healthy carriers of primary carnitine deficiency. Our findings suggest that heterozygosity for pathogenic alterations on SLC22A5 should be considered in the differential for individuals with persistent 3-MGA-uria of unclear etiology.


Assuntos
Cardiomiopatias/metabolismo , Carnitina/deficiência , Carnitina/metabolismo , Hiperamonemia/metabolismo , Erros Inatos do Metabolismo/metabolismo , Doenças Musculares/metabolismo , Adulto , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Doenças Mitocondriais/metabolismo , Triagem Neonatal/métodos , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo
9.
Hum Mutat ; 42(11): 1384-1398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34387910

RESUMO

Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype-phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.


Assuntos
Condroitina Sulfatases/genética , Mucopolissacaridose IV/genética , Mutação , Estudos de Associação Genética , Humanos
10.
Mol Ther ; 29(3): 989-1000, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186692

RESUMO

Aspartylglucosaminuria (AGU) is an autosomal recessive lysosomal storage disease caused by loss of the enzyme aspartylglucosaminidase (AGA), resulting in AGA substrate accumulation. AGU patients have a slow but progressive neurodegenerative disease course, for which there is no approved disease-modifying treatment. In this study, AAV9/AGA was administered to Aga-/- mice intravenously (i.v.) or intrathecally (i.t.), at a range of doses, either before or after disease pathology begins. At either treatment age, AAV9/AGA administration led to (1) dose dependently increased and sustained AGA activity in body fluids and tissues; (2) rapid, sustained, and dose-dependent elimination of AGA substrate in body fluids; (3) significantly rescued locomotor activity; (4) dose-dependent preservation of Purkinje neurons in the cerebellum; and (5) significantly reduced gliosis in the brain. Treated mice had no abnormal neurological phenotype and maintained body weight throughout the whole experiment to 18 months old. In summary, these results demonstrate that treatment of Aga-/- mice with AAV9/AGA is effective and safe, providing strong evidence that AAV9/AGA gene therapy should be considered for human translation. Further, we provide a direct comparison of the efficacy of an i.v. versus i.t. approach using AAV9, which should greatly inform the development of similar treatments for other related lysosomal storage diseases.


Assuntos
Aspartilglucosaminúria/terapia , Aspartilglucosilaminase/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Células de Purkinje/metabolismo , Animais , Aspartilglucosaminúria/enzimologia , Aspartilglucosaminúria/genética , Aspartilglucosaminúria/patologia , Peso Corporal , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Int J Neonatal Screen ; 6(4)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198351

RESUMO

The lysosomal storage disorder, mucopolysaccharidosis I (MPSI), results from mutations in IDUA, the gene that encodes the glycosaminoglycan-degrading enzyme α-L-iduronidase. Newborn screening efforts for MPSI have greatly increased the number of novel IDUA variants identified, but with insufficient experimental evidence regarding their pathogenicity, many of these variants remain classified as variants of uncertain significance (VUS). Defining pathogenicity for novel IDUA variants is critical for decisions regarding medical management and early intervention. Here, we describe a biochemical platform for the characterization of IDUA variants that relies on viral delivery of IDUA DNA into IDUA-deficient HAP1 cells and isolation of single cell expression clones. The relative specific activity of wild-type and variant α-iduronidase was determined using a combination of Western blot analysis and α-iduronidase activity assays. The specific activity of each variant enzyme was consistent across different single cell clones despite variable IDUA expression and could be accurately determined down to 0.05-0.01% of WT α-iduronidase activity. With this strategy we compared the specific activities of known pseudodeficiency variants (p.His82Gln, p.Ala79Thr, p.Val322Glu, p.Asp223Asn) or pathogenic variants (p.Ser633Leu, p.His240Arg) with variants of uncertain significance (p.Ser586Phe, p.Ile272Leu). The p.Ser633Leu and p.His240Arg variants both show very low activities consistent with their association with Scheie syndrome. In our experiments, however, p.His240Arg exhibited a specific activity five times higher than p.Ser633Leu in contrast to other reports showing equivalent activity. Cell clones expressing the p.Ser586Phe and p.Ile272Leu variants had specific activities in the range of other pseudodeficiency variants tested. Our findings show that pseudodeficiency and pathogenic variants can be distinguished from each other with regard to specific activity, and confirms that all the pseudodeficiency variants variably reduce α-iduronidase activity. We envision this platform will be a valuable resource for the rigorous assessment of the novel IDUA variants emerging from the expansion of newborn screening efforts.

12.
Front Immunol ; 11: 1000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508845

RESUMO

A 3.5 year old Hispanic female presented with signs and symptoms concerning for MPS II (Hunter Syndrome). The diagnosis of MPS II was confirmed by enzyme and molecular testing. Genetic evaluation revealed undetectable plasma iduronate-2-sulfatase enzyme activity and an inversion between intron 7 of the IDS gene and a region near exon 3 of IDS-2. This inversion is the molecular cause for ~8% of cases of MPS II and often results in a severe phenotype. X-inactivation studies revealed an inactivation ratio of 100:0. Given the patient's undetectable enzyme level, in combination with a severe IDS gene mutation, classic features at time of presentation, and the significantly skewed X inactivation, there was concern that she was at high risk of developing high and sustained antibody titers to idursulfase which would limit her benefit from enzyme replacement therapy (ERT). Anti-drug neutralizing antibodies to idursulfase have been associated with reduced systemic exposure to idursulfase and poorer clinical outcomes. Therefore, the decision was made to concurrently treat the patient with immune tolerance induction therapy during the first month of treatment with idursulfase in order to decrease the risk of developing high sustained antibody titers. The immune tolerance induction protocol consisted of rituximab weekly for 4 weeks, methotrexate three times a week for 3 weeks and monthly IVIG through B-cell and immunoglobulin recovery. Immune tolerance induction was initiated concurrently with the start of ERT. The patient had no significant adverse effects related to undergoing immune tolerance induction therapy and two and half years later is doing well with significantly reduced urine glycosaminoglycans and very low anti-drug antibody titers. This immune tolerance induction protocol could be considered for other patients with MPS II as well as patients with other lysosomal storage disorders who are starting on enzyme replacement therapy and are at high risk of developing neutralizing anti-drug antibodies.


Assuntos
Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Mucopolissacaridose II/terapia , Rituximab/uso terapêutico , Anticorpos Neutralizantes/metabolismo , Pré-Escolar , Feminino , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/imunologia , Tolerância Imunológica , Mucopolissacaridose II/imunologia , Deleção de Sequência
13.
Mol Genet Genomic Med ; 7(7): e00712, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31115173

RESUMO

BACKGROUND: Deficiency in the enzyme ß-mannosidase was described over three decades ago. Although rare in occurrence, the presentation of childhood-onset ß-mannosidase deficiency consists of hypotonia in the newborn period followed by global development delay, behavior problems, and intellectual disability. No effective pharmacologic treatments have been available. METHODS: We report 2-year outcomes following the first umbilical cord blood transplant in a 4-year-old boy with early childhood-onset disease. RESULTS: We show restoration of leukocyte ß-mannosidase activity which remained normal at 2 years posttransplant, and a simultaneous increase in plasma ß-mannosidase activity and dramatic decrease in urine-free oligosaccharides were also observed. MRI of the brain remained stable. Neurocognitive evaluation revealed test point gains, although the magnitude of improvement was less than expected for age, causing lower IQ scores that represent a wider developmental gap between the patient and unaffected peers. CONCLUSION: Our findings suggest that hematopoietic cell transplant can correct the biochemical defect in ß-mannosidosis, although preservation of the neurocognitive trajectory may be a challenge.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , beta-Manosidase/análise , beta-Manosidose/terapia , Encéfalo/diagnóstico por imagem , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Teste em Amostras de Sangue Seco , Humanos , Deficiência Intelectual/diagnóstico , Leucócitos/enzimologia , Imageamento por Ressonância Magnética , Masculino , Espectrometria de Massas em Tandem , beta-Manosidase/sangue , beta-Manosidose/patologia
14.
Mol Genet Genomic Med ; 6(6): 1229-1235, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187681

RESUMO

BACKGROUND: Beta-galactosidase-1 (GLB1) is a lysosomal hydrolase that is responsible for breaking down specific glycoconjugates, particularly GM1 (monosialotetrahexosylganglioside). Pathogenic variants in GLB1 cause two different lysosomal storage disorders: GM1 gangliosidosis and mucopolysaccharidosis type IVB. In GM1 gangliosidosis, decreased ß-galactosidase-1 enzymatic activity leads to the accumulation of GM1 gangliosides, predominantly within the CNS. We present a 22-month-old proband with GM1 gangliosidosis type II (late-infantile form) in whom a novel homozygous in-frame deletion (c.1468_1470delAAC, p.Asn490del) in GLB1 was detected. METHODS: We used an experimental protein structure of ß-galactosidase-1 to generate a model of the p.Asn490del mutant and performed molecular dynamic simulations to determine whether this mutation leads to altered ligand positioning compared to the wild-type protein. In addition, residual mutant enzyme activity in patient leukocytes was evaluated using a fluorometric assay. RESULTS: Molecular dynamics simulations showed the deletion to alter the catalytic site leading to misalignment of the catalytic residues and loss of collective motion within the model. We predict this misalignment will lead to impaired catalysis of ß-galactosidase-1 substrates. Enzyme assays confirmed diminished GLB1 enzymatic activity (~3% of normal activity) in the proband. CONCLUSIONS: We have described a novel, pathogenic in-frame deletion of GLB1 in a patient with GM1 gangliosidosis type II.


Assuntos
Gangliosidose GM1/genética , Deleção de Genes , Simulação de Dinâmica Molecular , beta-Galactosidase/química , Humanos , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
15.
Clin Chem ; 64(12): 1772-1779, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201803

RESUMO

BACKGROUND: The glycoproteinoses are a subgroup of lysosomal storage diseases (LSDs) resulting from impaired degradation of N-linked oligosaccharide side chains of glycoproteins, which are commonly screened by detecting the accumulated free oligosaccharides (FOSs) in urine via thin layer chromatography (TLC). The traditional TLC method suffers from limited analytical sensitivity and specificity and lacks quantification capability. Therefore, we developed an analytically sensitive and relatively specific assay using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for urinary FOS analysis and validated its use for urine screening of glycoproteinoses and other LSDs. METHODS: Urine volumes equivalent to 30 µg of creatinine were derivatized with butyl-4-aminobenzoate and then purified through a solid-phase extraction cartridge. A 7-min UPLC-MS/MS analysis was performed on a triple quadrupole mass spectrometer using an amide column for separation of derivatized FOS. Urine samples from >100 unaffected controls and 37 patients with various LSDs were studied. RESULTS: Relative quantification was conducted on 7 selected FOSs using a single internal standard, which allowed the identification of patients with 1 of 8 different LSDs: aspartylglucosaminuria, α-fucosidosis, α-mannosidosis, ß-mannosidosis, ß-galactosidase deficiency, Sandhoff disease, sialidosis, and galactosialidosis. Patients treated with hematopoietic stem cell transplant show decreased FOS responses compared with untreated patients. CONCLUSIONS: This UPLC-MS/MS assay offers a valuable tool for screening of glycoproteinoses and other LSDs, with potential use for future treatment monitoring.


Assuntos
Cromatografia Líquida/métodos , Doenças por Armazenamento dos Lisossomos/diagnóstico , Oligossacarídeos/urina , Espectrometria de Massas em Tandem/métodos , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Doenças por Armazenamento dos Lisossomos/terapia , Doenças por Armazenamento dos Lisossomos/urina , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046013

RESUMO

Site-1 protease (S1P), encoded by MBTPS1, is a serine protease in the Golgi. S1P regulates lipogenesis, endoplasmic reticulum (ER) function, and lysosome biogenesis in mice and in cultured cells. However, how S1P differentially regulates these diverse functions in humans has been unclear. In addition, no human disease with S1P deficiency has been identified. Here, we report a pediatric patient with an amorphic and a severely hypomorphic mutation in MBTPS1. The unique combination of these mutations results in a frequency of functional MBTPS1 transcripts of approximately 1%, a finding that is associated with skeletal dysplasia and elevated blood lysosomal enzymes. We found that the residually expressed S1P is sufficient for lipid homeostasis but not for ER and lysosomal functions, especially in chondrocytes. The defective S1P function specifically impairs activation of the ER stress transducer BBF2H7, leading to ER retention of collagen in chondrocytes. S1P deficiency also causes abnormal secretion of lysosomal enzymes due to partial impairment of mannose-6-phosphate-dependent delivery to lysosomes. Collectively, these abnormalities lead to apoptosis of chondrocytes and lysosomal enzyme-mediated degradation of the bone matrix. Correction of an MBTPS1 variant or reduction of ER stress mitigated collagen-trafficking defects. These results define a new congenital human skeletal disorder and, more importantly, reveal that S1P is particularly required for skeletal development in humans. Our findings may also lead to new therapies for other genetic skeletal diseases, as ER dysfunction is common in these disorders.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Transporte Proteico , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças do Desenvolvimento Ósseo/fisiopatologia , Técnicas de Cultura de Células , Pré-Escolar , Condrócitos/metabolismo , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas , Complexo de Golgi/metabolismo , Homeostase , Humanos , Lipogênese , Lisossomos/metabolismo , Manosefosfatos , Mutação
17.
Genet Med ; 20(7): 683-691, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29543224

RESUMO

Organic acid analysis detects accumulation of organic acids in urine and other body fluids and is a crucial first-tier laboratory test for a broad spectrum of inborn errors of metabolism. It is also frequently ordered as follow-up for a positive newborn screen result, as recommended by American College of Medical Genetics and Genomics newborn screening ACTion sheets and algorithms. The typical assay is performed by gas chromatography-mass spectrometry. These technical standards were developed to provide guidance for laboratory practices in organic acid analysis, interpretation, and reporting. In addition, new diagnostic biomarkers for recently discovered organic acidurias have been added.


Assuntos
Técnicas de Laboratório Clínico/normas , Testes Genéticos/normas , Urinálise/normas , Química Orgânica/normas , Genética Médica/métodos , Genética Médica/normas , Genômica/normas , Humanos , Recém-Nascido , Laboratórios , Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal , Estados Unidos , Urinálise/métodos
18.
JIMD Rep ; 34: 11-18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27469132

RESUMO

Keratan sulfate (KS) is commonly elevated in urine samples from patients with mucopolysaccharidosis type IVA (MPS IVA) and is considered pathognomonic for the condition. Recently, a new method has been described by Martell et al. to detect and measure urinary KS utilizing LC-MS/MS. As a part of the validation of this method in our laboratory, we studied the sensitivity and specificity of elevated urine KS levels using 25 samples from 15 MPS IVA patients, and 138 samples from 102 patients with other lysosomal storage disorders, including MPS I (n = 9), MPS II (n = 13), MPS III (n = 23), MPS VI (n = 7), beta-galactosidase deficiency (n = 7), mucolipidosis (ML) type II, II/III and III (n = 51), alpha-mannosidosis (n = 11), fucosidosis (n = 4), sialidosis (n = 5), Pompe disease (n = 3), aspartylglucosaminuria (n = 4), and galactosialidosis (n = 1). As expected, urine KS values were significantly higher (fivefold average increase) than age-matched controls in all MPS IVA patients. Urine KS levels were also significantly elevated (threefold to fourfold increase) in patients with GM-1 gangliosidosis, MPS IVB, ML II and ML II/III, and fucosidosis. Urine KS was also elevated to a smaller degree (1.1-fold to 1.7-fold average increase) in patients with MPS I, MPS II, and ML III. These findings suggest that while the UPLC-MS/MS urine KS method is 100% sensitive for the detection of patients with MPS IVA, elevated urine KS is not specific for this condition. Therefore, caution is advised when interpreting urinary keratan sulfate results.

19.
Am J Med Genet A ; 173(2): 501-509, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27797444

RESUMO

We describe a patient with failure to thrive, hepatomegaly, liver dysfunction, and elevation of multiple plasma lysosomal enzyme activities mimicking mucolipidosis II or III, in whom a diagnosis of hereditary fructose intolerance (HFI) was ultimately obtained. She presented before introduction of solid foods, given her consumption of a fructose-containing infant formula. We present the most extensive panel of lysosomal enzyme activities reported to date in a patient with HFI, and propose that multiple enzyme elevations in plasma, especially when in conjunction with a normal plasma α-mannosidase activity, should elicit a differential diagnosis of HFI. We also performed a review of the literature on the different etiologies of elevated lysosomal enzyme activities in serum or plasma. © 2016 Wiley Periodicals, Inc.


Assuntos
Intolerância à Frutose/diagnóstico , Mucolipidoses/diagnóstico , Biomarcadores/sangue , Diagnóstico Diferencial , Ativação Enzimática , Feminino , Intolerância à Frutose/sangue , Intolerância à Frutose/genética , Humanos , Lactente , Leucócitos/enzimologia , Lisossomos/enzimologia , Mucolipidoses/sangue , Mucolipidoses/genética , Fenótipo
20.
Mol Genet Metab ; 118(2): 92-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27142465

RESUMO

UNLABELLED: Sialuria, a rare inborn error of metabolism, was diagnosed in a healthy 12-year-old boy through whole exome sequencing. The patient had experienced mild delays of speech and motor development, as well as persistent hepatomegaly. Identification of the 8th individual with this disorder, prompted follow-up of the mother-son pair of patients diagnosed over 15years ago. Hepatomegaly was confirmed in the now 19-year-old son, but in the 46-year-old mother a clinically silent liver tumor was detected by ultrasound and MRI. The tumor was characterized as an intrahepatic cholangiocarcinoma (IHCC) and DNA analysis of both tumor and normal liver tissue confirmed the original GNE mutation. As the maternal grandmother in the latter family died at age 49years of a liver tumor, a retrospective study of the remaining pathology slides was conducted and confirmed it to have been an IHCC as well. The overall observation generated the hypothesis that sialuria may predispose to development of this form of liver cancer. As proof of sialuria in the grandmother could not be obtained, an alternate cause of IHCC cannot be ruled out. In a series of 102 patients with IHCC, not a single instance was found with the allosteric site mutation in the GNE gene. This confirms that sialuria is rare even in a selected group of patients, but does not invalidate the concern that sialuria may be a risk factor for IHCC. SYNOPSIS: Sialuria is a rare inborn error of metabolism characterized by excessive synthesis and urinary excretion of free sialic acid with only minimal clinical morbidity in early childhood, but may be a risk factor for intrahepatic cholangiocarcinoma in adulthood.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Doenças Raras/genética , Doença do Armazenamento de Ácido Siálico/genética , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/cirurgia , Criança , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/cirurgia , Feminino , Hepatomegalia/diagnóstico , Heterozigoto , Humanos , Fígado/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/urina , Doenças Raras/diagnóstico , Estudos Retrospectivos , Fatores de Risco , Doença do Armazenamento de Ácido Siálico/diagnóstico , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...