Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cardiovasc Intervent Radiol ; 43(11): 1661-1670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935141

RESUMO

PURPOSE: To validate a simulation environment for virtual planning of percutaneous cryoablation of renal tumors. MATERIALS AND METHODS: Prospectively collected data from 19 MR-guided procedures were used for validation of the simulation model. Volumetric overlap of the simulated ablation zone volume (Σ) and the segmented ablation zone volume (S; assessed on 1-month follow-up scan) was quantified. Validation metrics were DICE Similarity Coefficient (DSC; the ratio between twice the overlapping volume of both ablation zones divided by the sum of both ablation zone volumes), target overlap (the ratio between the overlapping volume of both ablation zones to the volume of S; low ratio means S is underestimated), and positive predictive value (the ratio between the overlapping volume of both ablation zones to the volume of Σ; low ratio means S is overestimated). Values were between 0 (no alignment) and 1 (perfect alignment), a value > 0.7 is considered good. RESULTS: Mean volumes of S and Σ were 14.8 cm3 (± 9.9) and 26.7 cm3 (± 15.0), respectively. Mean DSC value was 0.63 (± 0.2), and ≥ 0.7 in 9 cases (47%). Mean target overlap and positive predictive value were 0.88 (± 0.11) and 0.53 (± 0.24), respectively. In 17 cases (89%), target overlap was ≥ 0.7; positive predictive value was ≥ 0.7 in 4 cases (21%) and < 0.6 in 13 cases (68%). This indicates S is overestimated in the majority of cases. CONCLUSION: The validation results showed a tendency of the simulation model to overestimate the ablation effect. Model adjustments are necessary to make it suitable for clinical use.


Assuntos
Criocirurgia/métodos , Internet , Neoplasias Renais/cirurgia , Imagem por Ressonância Magnética Intervencionista/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Renais/diagnóstico , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias
2.
Eur Radiol ; 30(2): 934-942, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31471752

RESUMO

OBJECTIVES: To evaluate the accuracy and clinical integrability of a comprehensive simulation tool to plan and predict radiofrequency ablation (RFA) zones in liver tumors. METHODS: Forty-five patients with 51 malignant hepatic lesions of different origins were included in a prospective multicenter trial. Prior to CT-guided RFA, all patients underwent multiphase CT which included acquisitions for the assessment of liver perfusion. These data were used to generate a 3D model of the liver. The intra-procedural position of the RFA probe was determined by CT and semi-automatically registered to the 3D model. Size and shape of the simulated ablation zones were compared with those of the thermal ablation zones segmented in contrast-enhanced CT images 1 month after RFA; procedure time was compared with a historical control group. RESULTS: Simulated and segmented ablation zone volumes showed a significant correlation (ρ = 0.59, p < 0.0001) and no significant bias (Wilcoxon's Z = 0.68, p = 0.25). Representative measures of ablation zone comparison were as follows: average surface deviation (absolute average error, AAE) with 3.4 ± 1.7 mm, Dice similarity coefficient 0.62 ± 0.14, sensitivity 0.70 ± 0.21, and positive predictive value 0.66 ± 0. There was a moderate positive correlation between AAE and duration of the ablation (∆t; r = 0.37, p = 0.008). After adjustments for inter-individual differences in ∆t, liver perfusion, and prior transarterial chemoembolization procedures, ∆t was an independent predictor of AAE (ß = 0.03 mm/min, p = 0.01). Compared with a historical control group, the simulation added 3.5 ± 1.9 min to the procedure. CONCLUSION: The validated simulation tool showed acceptable speed and accuracy in predicting the size and shape of hepatic RFA ablation zones. Further randomized controlled trials are needed to evaluate to what extent this tool might improve patient outcomes. KEY POINTS: • More reliable, patient-specific intra-procedural estimation of the induced RFA ablation zones in the liver may lead to better planning of the safety margins around tumors. • Dedicated real-time simulation software to predict RFA-induced ablation zones in patients with liver malignancies has shown acceptable agreement with the follow-up results in a first prospective multicenter trial suggesting a randomized controlled clinical trial to evaluate potential outcome benefit for patients.


Assuntos
Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/métodos , Neoplasias Hepáticas/cirurgia , Adolescente , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/métodos , Simulação por Computador , Feminino , Humanos , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/patologia , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Planejamento de Assistência ao Paciente , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Adulto Jovem
3.
Sci Rep ; 8(1): 787, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335429

RESUMO

The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.


Assuntos
Ablação por Cateter , Neoplasias Hepáticas/cirurgia , Cirurgia Assistida por Computador/métodos , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/patologia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
4.
Int J Comput Assist Radiol Surg ; 12(1): 59-68, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27538836

RESUMO

PURPOSE: Radiofrequency ablation (RFA) is one of the most popular and well-standardized minimally invasive cancer treatments (MICT) for liver tumours, employed where surgical resection has been contraindicated. Less-experienced interventional radiologists (IRs) require an appropriate planning tool for the treatment to help avoid incomplete treatment and so reduce the tumour recurrence risk. Although a few tools are available to predict the ablation lesion geometry, the process is computationally expensive. Also, in our implementation, a few patient-specific parameters are used to improve the accuracy of the lesion prediction. METHODS: Advanced heterogeneous computing using personal computers, incorporating the graphics processing unit (GPU) and the central processing unit (CPU), is proposed to predict the ablation lesion geometry. The most recent GPU technology is used to accelerate the finite element approximation of Penne's bioheat equation and a three state cell model. Patient-specific input parameters are used in the bioheat model to improve accuracy of the predicted lesion. RESULTS: A fast GPU-based RFA solver is developed to predict the lesion by doing most of the computational tasks in the GPU, while reserving the CPU for concurrent tasks such as lesion extraction based on the heat deposition at each finite element node. The solver takes less than 3 min for a treatment duration of 26 min. When the model receives patient-specific input parameters, the deviation between real and predicted lesion is below 3 mm. CONCLUSION: A multi-centre retrospective study indicates that the fast RFA solver is capable of providing the IR with the predicted lesion in the short time period before the intervention begins when the patient has been clinically prepared for the treatment.


Assuntos
Carcinoma Hepatocelular/cirurgia , Ablação por Cateter/métodos , Gráficos por Computador , Neoplasias Hepáticas/cirurgia , Carcinoma Hepatocelular/diagnóstico por imagem , Simulação por Computador , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Procedimentos Cirúrgicos Minimamente Invasivos , Modelos Teóricos , Imagem de Perfusão , Estudos Retrospectivos , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X
5.
Sci Rep ; 5: 15373, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482818

RESUMO

Percutaneous radiofrequency ablation (RFA) is a minimally invasive technique that destroys cancer cells by heat. The heat results from focusing energy in the radiofrequency spectrum through a needle. Amongst others, this can enable the treatment of patients who are not eligible for an open surgery. However, the possibility of recurrent liver cancer due to incomplete ablation of the tumor makes post-interventional monitoring via regular follow-up scans mandatory. These scans have to be carefully inspected for any conspicuousness. Within this study, the RF ablation zones from twelve post-interventional CT acquisitions have been segmented semi-automatically to support the visual inspection. An interactive, graph-based contouring approach, which prefers spherically shaped regions, has been applied. For the quantitative and qualitative analysis of the algorithm's results, manual slice-by-slice segmentations produced by clinical experts have been used as the gold standard (which have also been compared among each other). As evaluation metric for the statistical validation, the Dice Similarity Coefficient (DSC) has been calculated. The results show that the proposed tool provides lesion segmentation with sufficient accuracy much faster than manual segmentation. The visual feedback and interactivity make the proposed tool well suitable for the clinical workflow.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Ablação por Cateter , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Tomografia Computadorizada por Raios X , Algoritmos , Ablação por Cateter/métodos , Humanos , Aumento da Imagem , Estudos Retrospectivos , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
6.
Artigo em Inglês | MEDLINE | ID: mdl-26736783

RESUMO

In this contribution, we present a semi-automatic segmentation algorithm for radiofrequency ablation (RFA) zones via optimal s-t-cuts. Our interactive graph-based approach builds upon a polyhedron to construct the graph and was specifically designed for computed tomography (CT) acquisitions from patients that had RFA treatments of Hepatocellular Carcinomas (HCC). For evaluation, we used twelve post-interventional CT datasets from the clinical routine and as evaluation metric we utilized the Dice Similarity Coefficient (DSC), which is commonly accepted for judging computer aided medical segmentation tasks. Compared with pure manual slice-by-slice expert segmentations from interventional radiologists, we were able to achieve a DSC of about eighty percent, which is sufficient for our clinical needs. Moreover, our approach was able to handle images containing (DSC=75.9%) and not containing (78.1%) the RFA needles still in place. Additionally, we found no statistically significant difference (p<;0.423) between the segmentation results of the subgroups for a Mann-Whitney test. Finally, to the best of our knowledge, this is the first time a segmentation approach for CT scans including the RFA needles is reported and we show why another state-of-the-art segmentation method fails for these cases. Intraoperative scans including an RFA probe are very critical in the clinical practice and need a very careful segmentation and inspection to avoid under-treatment, which may result in tumor recurrence (up to 40%). If the decision can be made during the intervention, an additional ablation can be performed without removing the entire needle. This decreases the patient stress and associated risks and costs of a separate intervention at a later date. Ultimately, the segmented ablation zone containing the RFA needle can be used for a precise ablation simulation as the real needle position is known.


Assuntos
Técnicas de Ablação/instrumentação , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Agulhas , Ondas de Rádio , Algoritmos , Humanos , Recidiva , Tomografia Computadorizada por Raios X
7.
Med Image Anal ; 16(1): 140-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21742543

RESUMO

A novel liver tumor segmentation method for CT images is presented. The aim of this work was to reduce the manual labor and time required in the treatment planning of radiofrequency ablation (RFA), by providing accurate and automated tumor segmentations reliably. The developed method is semi-automatic, requiring only minimal user interaction. The segmentation is based on non-parametric intensity distribution estimation and a hidden Markov measure field model, with application of a spherical shape prior. A post-processing operation is also presented to remove the overflow to adjacent tissue. In addition to the conventional approach of using a single image as input data, an approach using images from multiple contrast phases was developed. The accuracy of the method was validated with two sets of patient data, and artificially generated samples. The patient data included preoperative RFA images and a public data set from "3D Liver Tumor Segmentation Challenge 2008". The method achieved very high accuracy with the RFA data, and outperformed other methods evaluated with the public data set, receiving an average overlap error of 30.3% which represents an improvement of 2.3% points to the previously best performing semi-automatic method. The average volume difference was 23.5%, and the average, the RMS, and the maximum surface distance errors were 1.87, 2.43, and 8.09 mm, respectively. The method produced good results even for tumors with very low contrast and ambiguous borders, and the performance remained high with noisy image data.


Assuntos
Algoritmos , Neoplasias Hepáticas/diagnóstico por imagem , Modelos Biológicos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Humanos , Cadeias de Markov , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Philos Trans A Math Phys Eng Sci ; 369(1954): 4233-54, 2011 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-21969674

RESUMO

The treatment of cancerous tumours in the liver remains clinically challenging, despite the wide range of treatment possibilities, including radio-frequency ablation (RFA), high-intensity focused ultrasound and resection, which are currently available. Each has its own advantages and disadvantages. For non- or minimally invasive modalities, such as RFA, considered here, it is difficult to monitor the treatment in vivo. This is particularly problematic in the liver, where large blood vessels act as heat sinks, dissipating delivered heat and shrinking the size of the lesion (the volume damaged by the heat treatment) locally; considerable experience is needed on the part of the clinician to optimize the heat treatment to prevent recurrence. In this paper, we outline our work towards developing a simulation tool kit that could be used both to optimize treatment protocols in advance and to train the less-experienced clinicians for RFA treatment of liver tumours. This tool is based on a comprehensive mathematical model of bio-heat transfer and cell death. We show how simulations of ablations in two pigs, based on individualized imaging data, compare directly with experimentally measured lesion sizes and discuss the likely sources of error and routes towards clinical implementation. This is the first time that such a 'loop' of mathematical modelling and experimental validation in vivo has been performed in this context, and such validation enables us to make quantitative estimates of error.


Assuntos
Biofísica/métodos , Ablação por Cateter/métodos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Fígado/efeitos da radiação , Algoritmos , Animais , Vasos Sanguíneos/patologia , Biologia Computacional/métodos , Temperatura Alta , Humanos , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Modelos Teóricos , Distribuição Normal , Ondas de Rádio , Software
9.
Artigo em Inglês | MEDLINE | ID: mdl-20879213

RESUMO

In this paper, a novel segmentation method for liver vasculature is presented, intended for numerical simulation of radio frequency ablation (RFA). The developed method is a semiautomatic hybrid based on multi-scale vessel enhancement combined with ridge-oriented region growing and skeleton-based postprocessing. In addition, an interactive tool for segmentation refinement was developed. Four instances of three-phase contrast enhanced computed tomography (CT) images of porcine liver were used in the evaluation. The results showed improved accuracy over common approaches and illustrated the method's suitability for simulation purposes.


Assuntos
Angiografia/métodos , Ablação por Cateter/métodos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Simulação por Computador , Fígado/irrigação sanguínea , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Cuidados Pré-Operatórios/métodos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
10.
Opt Express ; 17(17): 14977-92, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19687976

RESUMO

Diffuse optical imaging is an emerging medical imaging modality based on near-infrared and visible red light. The method can be used for imaging activations in the human brain. In this study, a deformable probabilistic atlas of the distribution of tissue types within the term neonatal head was created based on MR images. The use of anatomical prior information provided by such atlas in reconstructing brain activations from optical imaging measurements was studied using Monte Carlo simulations. The results suggest that use of generic anatomical information can greatly improve the spatial accuracy and robustness of the reconstruction when noise is present in the data.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética/instrumentação , Método de Monte Carlo , Óptica e Fotônica , Reconhecimento Automatizado de Padrão/métodos , Fótons , Probabilidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-17354825

RESUMO

We present a new algorithm for affine registration of diffusion tensor magnetic resonance (DT-MR) images. The method is based on a new formulation of a point-wise tensor similarity measure, which weights directional and magnitude information differently depending on the type of diffusion. The method is compared to a reference method, which uses normalized mutual information (NMI), calculated either from a fractional anisotropy (FA) map or a T2-weighted MR image. The registration methods are applied to real and simulated DT-MR images. Visual assessment is done for real data and for simulated data, registration accuracy is defined. The results show that the proposed method outperforms the reference method.


Assuntos
Inteligência Artificial , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Acad Radiol ; 12(10): 1273-84, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16179204

RESUMO

RATIONALE AND OBJECTIVES: An image registration method was developed to automatically correct motion artifacts, mostly from breathing, from cardiac cine magnetic resonance (MR) images. MATERIALS AND METHODS: The location of each slice in an image stack was optimized by maximizing a similarity measure of the slice with another image slice stack. The optimization was performed iteratively and both image stacks were corrected simultaneously. Two procedures to optimize the similarity were tested: standard gradient optimization and stochastic optimization in which one slice is chosen randomly from the image stacks and its location is optimized. In this work, cine short- and long-axis images were used. In addition to visual inspection results from real data, the performance of the algorithm was evaluated quantitatively by simulating the movements in four real MR data sets. The mean error and standard deviation were defined for 50 simulated movements as each slice was randomly displaced. The error rate, defined as the percentage of non-satisfactory registration results, was evaluated. The paired t-test was used to evaluate the statistical difference between the tested optimization methods. RESULTS: The algorithm developed was successfully applied to correct motion artifacts from real and simulated data. The results, where typical motion artifacts were simulated, indicated an error rate of about 3%. Subvoxel registration accuracy was also achieved. When different optimization methods were compared, the registration accuracy of the stochastic approach proved to be superior to the standard gradient technique (P < 10(-9)). CONCLUSIONS: The novel method was capable of robustly and accurately correcting motion artifacts from cardiac cine MR images.


Assuntos
Artefatos , Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Movimento , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...