Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36655987

RESUMO

Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own phosphodiester backbones. These ribozymes are found in all domains of life and are also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes are also an important model of sequence-to-function relationships for RNA because their small size simplifies synthesis of genetic variants and self-cleaving activity is an accessible readout of the functional consequence of the mutation. Here, we used a high-throughput experimental approach to determine the relative activity for every possible single and double mutant of five self-cleaving ribozymes. From this data, we comprehensively identified non-additive effects between pairs of mutations (epistasis) for all five ribozymes. We analyzed how changes in activity and trends in epistasis map to the ribozyme structures. The variety of structures studied provided opportunities to observe several examples of common structural elements, and the data was collected under identical experimental conditions to enable direct comparison. Heatmap-based visualization of the data revealed patterns indicating structural features of the ribozymes including paired regions, unpaired loops, non-canonical structures, and tertiary structural contacts. The data also revealed signatures of functionally critical nucleotides involved in catalysis. The results demonstrate that the data sets provide structural information similar to chemical or enzymatic probing experiments, but with additional quantitative functional information. The large-scale data sets can be used for models predicting structure and function and for efforts to engineer self-cleaving ribozymes.


Assuntos
RNA Catalítico , RNA Catalítico/metabolismo , RNA , Sequência de Bases , Nucleotídeos , Mutagênese , Conformação de Ácido Nucleico
2.
Artigo em Inglês | MEDLINE | ID: mdl-34693295

RESUMO

The apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD) and accumulating evidence suggests that fragmentation with a toxic-gain of function may be a key molecular step associated with this risk. Recently, we demonstrated strong immunoreactivity of a 151 amino-terminal fragment of apoE4 (E4-fragment) within the nucleus of microglia in the human AD brain. In vitro, this fragment led to toxicity and activation of inflammatory processes in BV2 microglia cells. Additionally, a transcriptome analysis following exogenous treatment of BV2 microglia cells with this E4 fragment led to a > 2-fold up regulation of 1,608 genes, with many genes playing a role in inflammation and microglia activation. To extend these findings, we here report a similar transcriptome analysis in BV2 microglia cells following treatment with full-length ApoE4 (FL-ApoE4). The results indicated that full-length ApoE4 had a very small effect on gene expression compared to the fragment. Only 48 differentially expressed genes (DEGs) were identified (p < 0.05, and greater than 2-fold change). A gene ontology analysis of these DEGs indicated that they are not involved in inflammatory and activation processes, in contrast to the genes up regulated by the E4-fragment. In addition, genes that showed a negative fold-change upon FL-E4 treatment typically showed a strong positive fold-change upon treatment with the fragment (Pearson's r = -0.7). Taken together, these results support the hypothesis that a key step in the conversion of microglia to an activated phenotype is proteolytic cleavage of FL-ApoE4. Therefore, the neutralization of this amino-terminal fragment of ApoE4, specifically, may serve as an important therapeutic strategy in the treatment of AD.

3.
Mol Biol Evol ; 38(7): 2843-2853, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33720319

RESUMO

Self-cleaving ribozymes are genetic elements found in all domains of life, but their evolution remains poorly understood. A ribozyme located in the second intron of the cytoplasmic polyadenylation binding protein 3 gene (CPEB3) shows high sequence conservation in mammals, but little is known about the functional conservation of self-cleaving ribozyme activity across the mammalian tree of life or during the course of mammalian evolution. Here, we use a phylogenetic approach to design a mutational library and a deep sequencing assay to evaluate the in vitro self-cleavage activity of numerous extant and resurrected CPEB3 ribozymes that span over 100 My of mammalian evolution. We found that the predicted sequence at the divergence of placentals and marsupials is highly active, and this activity has been conserved in most lineages. A reduction in ribozyme activity appears to have occurred multiple different times throughout the mammalian tree of life. The in vitro activity data allow an evaluation of the predicted mutational pathways leading to extant ribozyme as well as the mutational landscape surrounding these ribozymes. The results demonstrate that in addition to sequence conservation, the self-cleavage activity of the CPEB3 ribozyme has persisted over millions of years of mammalian evolution.


Assuntos
Evolução Biológica , Sequência Conservada , Mamíferos/genética , RNA Catalítico/genética , Proteínas de Ligação a RNA/genética , Animais , Sequência de Bases , Humanos , Mamíferos/metabolismo , Mutação , RNA Catalítico/metabolismo , Proteínas de Ligação a RNA/metabolismo
4.
Front Aging Neurosci ; 12: 256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922284

RESUMO

Despite the fact that harboring the apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD), the exact mechanism by which ApoE4 contributes to disease progression remains unknown. Recently, we demonstrated that a 151 amino-terminal fragment of ApoE4 (nApoE41-151) localizes within the nucleus of microglia in the human AD brain and traffics to the nucleus causing toxicity in BV2 microglia cells. In the present study, we examined in detail what genes may be affected following treatment by nApoE41-151. Transcriptome analyses in BV2 microglial cells following sublethal treatment with nApoE41-151 revealed the upregulation of almost 4,000 genes, with 20 of these genes upregulated 182- to 715-fold compared to untreated control cells. The majority of these 20 genes play a role in the immune response and polarization toward microglial M1 activation. As a control, an identical nApoE31-151 fragment that differed by a single amino acid at position 112 (Cys→Arg) was tested and produced a similar albeit lower level of upregulation of an identical set of genes. In this manner, enriched pathways upregulated by nApoE31-151 and nApoE41-151 following exogenous treatment included Toll receptor signaling, chemokine/cytokine signaling and apoptosis signaling. There were unique genes differentially expressed by at least two-fold for either fragment. For nApoE31-151, these included 16 times as many genes, many of which are involved in physiological functions within microglia. For nApoE41-151, on the other hand the number genes uniquely upregulated was significantly lower, with many of the top upregulated genes having unknown functions. Taken together, our results suggest that while nApoE31-151 may serve a more physiological role in microglia, nApoE41-151 may activate genes that contribute to disease inflammation associated with AD. These data support the hypothesis that the link between harboring the APOE4 allele and dementia risk could be enhanced inflammation through activation of microglia.

5.
Oxid Med Cell Longev ; 2019: 5123565, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198491

RESUMO

Despite the fact that harboring the apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD), the exact mechanism by which apoE4 contributes to disease progression remains unknown. Recently, we demonstrated that a 151 amino-terminal fragment of apoE4 (nApoE41-151) localizes within the nucleus of microglia in the human AD brain, suggesting a potential role in gene expression. In the present study, we investigated this possibility utilizing BV2 microglia cells treated exogenously with nApoE41-151. The results indicated that nApoE41-151 leads to morphological activation of microglia cells through, at least in part, the downregulation of a novel ER-associated protein, CXorf56. Moreover, treatment of BV2 cells with nApoE41-151 resulted in a 68-fold increase in the expression of the inflammatory cytokine, TNFα, a key trigger of microglia activation. In this regard, we also observed a specific binding interaction of nApoE41-151 with the TNFα promoter region. Collectively, these data identify a novel gene-regulatory pathway involving CXorf56 that may link apoE4 to microglia activation and inflammation associated with AD.


Assuntos
Apolipoproteína E4/metabolismo , Regulação da Expressão Gênica , Microglia/fisiologia , Fragmentos de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apolipoproteína E4/genética , Astrócitos/citologia , Astrócitos/fisiologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Camundongos , Microglia/citologia , Fragmentos de Peptídeos/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...