Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Quantum Electron ; 53(4): 205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776589

RESUMO

A numerical study of metal front contacts grid spacing for photovoltaic (PV) converter of relatively small area is presented. The model is constructed based on Solcore, an open-source Python-based library. A three-step-process is developed to create a hybrid quasi-3D model. The grid spacing under various operating conditions was assessed for two similar p-n and n-p structures. The key target was finding optimal configuration to achieve the highest conversion efficiency at different temperatures and illumination profiles. The results show that the n-p structure yields wider optimal spacing range and the highest output power. Also, it was found that temperature increase and illumination nonuniformity results in narrower optimal spacing for both structure architectures. Analyzing the current-voltage characteristics, reveals that resistive losses are the dominant loss mechanism bringing restriction in terms of ability to handle nonuniform illumination.

2.
Nanotechnology ; 32(13): 130001, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33276349

RESUMO

Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.

3.
ACS Appl Mater Interfaces ; 10(51): 44932-44940, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30508372

RESUMO

InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown Al2O3/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis. The chemical environment and core-level shifts are clarified for well-embedded InAs interfaces (12 nm Al2O3) to avoid, in particular, effects of a significant potential change at the vacuum-solid interface. High-resolution As 3d spectra reveal that the Al2O3/InAs interface, which was sputter-cleaned before ALD, includes +1.0 eV shift, whereas As 3d of the preoxidized (3 × 1)-O interface exhibits a shift of -0.51 eV. The measurements also indicate that an As2O3 type structure is not crucial in controlling defect densities. Regarding In 4d measurements, the sputtered InAs interface includes only a +0.29 eV shift, while the In 4d shift around -0.3 eV is found to be inherent for the crystalline oxidized interfaces. Thus, the negative shifts, which have been usually associated with dangling bonds, are not necessarily an indication of such point defects as previously expected. In contrast, the negative shifts can arise from bonding with O atoms. Therefore, specific care should be directed in determining the bulk-component positions in photoelectron studies. Finally, we present an approach to transfer the InAs oxidation results to a device process of high electron mobility transistors (HEMT) using an As-rich III-V surface and In deposition. The approach is found to decrease a gate leakage current of HEMT without losing the gate controllability.

4.
Phys Chem Chem Phys ; 17(10): 7060-6, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25686555

RESUMO

Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.

5.
Nanoscale Res Lett ; 9(1): 80, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24533702

RESUMO

We report a time-resolved photoluminescence study for GaInNAs and GaNAsSb p-i-n bulk solar cells grown on GaAs(100). In particular, we studied the extent to which the carrier lifetime decreases with the increase of N content. Rapid thermal annealing proved to significantly increase the decay times by a factor of 10 to 12 times, for both GaInNAs and GaNAsSb heterostructures, while for the 1-eV bandgap GaNAsSb structure, grown at the same growth conditions as the GaInNAs, the photoluminescence decay time remained slightly below 100 ps after annealing; the approximately 1.15-eV GaInNAs p-i-n solar cell exhibited a lifetime as long as 900 ps. PACS: 78.47.D; 78.55.Cr; 88.40.hj.

6.
Nanoscale Res Lett ; 9(1): 61, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24498981

RESUMO

We have measured the characteristics of molecular beam epitaxy grown GaInNAsSb solar cells with different bandgaps using AM1.5G real sun illumination. Based on the solar cell diode characteristics and known parameters for state-of-the-art GaInP/GaAs and GaInP/GaAs/Ge cells, we have calculated the realistic potential efficiency increase for GaInP/GaAs/GaInNAsSb and GaInP/GaAs/GaInNAsSb/Ge multijunction solar cells for different current matching conditions. The analyses reveal that realistic GaInNAsSb solar cell parameters, render possible an extraction efficiency of over 36% at 1-sun AM1.5D illumination. PACS: 88.40.hj; 88.40.jm; 88.40.jp; 81.15.Hi.

7.
Nanotechnology ; 22(10): 105603, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21289401

RESUMO

We study the photoluminescence and impact of post-growth annealing of stacked, strain-free GaAs quantum dots fabricated by refilling of self-organized nanoholes using molecular beam epitaxy. Temperature- and power-dependent photoluminescence studies reveal an excellent optical quality of the quantum-dot stack. After high-temperature post-growth annealing only slight blueshifts and an increase in full width at half-maximum of the photoluminescence peak are observed, indicating very high-temperature stability and crystalline quality of the stacked GaAs quantum-dot structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...