Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885637

RESUMO

We present the excitonic configuration interaction (ECI) method─a fragment-based analogue of the CI method for electronic structure calculations of multichromophoric systems. It can also be viewed as a generalization of the exciton approach, with the following properties: (i) It constructs the effective Hamiltonian exclusively from monomer calculations. (ii) It employs the strong orthogonality assumption and is exact within McWeeny's group function theory, thus requiring only one-electron density matrices of the monomer states. (iii) It is agnostic of the monomer electronic structure method, allowing us to use/combine different methods. (iv) It includes an embedding point charge scheme (called excitonic Hartree-Fock, EHF) to improve the accuracy of the monomer states, but such that the effective full-system Hamiltonian is not explicitly dependent on the embedding. (v) It is systematically improvable, by expanding the set of monomer states and by including configurations where two or more monomers are excited (defining the ECIS, ECISD, etc., methods). The performance of ECI is assessed by computing the absorption spectrum of two exemplary multichromophoric systems, using CIS as the monomer electronic structure method. The accuracy of ECI significantly depends on the chosen embedding charges and the ECI expansion. The most accurate assessed combinations─ECIS or ECISD with EHF embedding─yield spectra that agree qualitatively and quantitatively with full-system direct calculations, with deviations of the excitation energies below 0.1 eV. We also show that ECISD based on CIS monomer calculations can predict states where two monomers are excited simultaneously (e.g., triplet-triplet double-local excitations) that are inaccessible in a full-system CIS calculation.

2.
J Chem Theory Comput ; 20(11): 4738-4750, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38768386

RESUMO

Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute's photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.

3.
J Chem Theory Comput ; 19(20): 7171-7186, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37788824

RESUMO

We present a theoretical framework for a hybrid linear vibronic coupling model electrostatically embedded into a molecular mechanics environment, termed the linear vibronic coupling/molecular mechanics (LVC/MM) method, for the surface hopping including arbitrary coupling (SHARC) molecular dynamics package. Electrostatic embedding is realized through the computation of interactions between environment point charges and distributed multipole expansions (DMEs, up to quadrupoles) that represent each electronic state and transition densities in the diabatic basis. The DME parameters are obtained through a restrained electrostatic potential (RESP) fit, which we extended to yield higher-order multipoles. We also implemented in SHARC a scheme for achieving roto-translational invariance of LVC models as well as a general quantum mechanics/molecular mechanics (QM/MM) interface, an OpenMM interface, and restraining potentials for simulating liquid droplets. Using thioformaldehyde in water as a test case, we demonstrate that LVC/MM can accurately reproduce the solvation structure and energetics of rigid solutes, with errors on the order of 1-2 kcal/mol compared to a BP86/MM reference. The implementation in SHARC is shown to be very efficient, enabling the simulation of trajectories on the nanosecond time scale in a matter of days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...