Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38137436

RESUMO

Variations in stress responses between individuals are linked to factors ranging from stress coping styles to the sensitivity of neurotransmitter systems. Many anxiolytic compounds can increase stressor engagement through the modulation of neurotransmitter systems and are used to investigate stress response mechanisms. The effect of such modulation may vary in time depending on concentration or environment, but those effects are hard to dissect because of the slow transition. We investigated the temporal effect of ethanol and found that ethanol-treated individual zebrafish larvae showed altered behavior that is different between drug concentrations and decreases with time. We used an artificial neural network approach with a time-dependent method for analyzing long (90 min) experiments on zebrafish larvae and found that individuals from the 0.5% group begin to show locomotor activity corresponding to the control group starting from the 60th minute. The locomotor activity of individuals from the 2% group after the 80th minute is classified as the activity of individuals from the 1.5% group. Our method shows three clusters of different concentrations in comparison with two clusters, which were obtained with the usage of a statistical approach for analyzing just the speed of fish movements. In addition, we show that such changes are not explained by basic behavior statistics such as speed and are caused by shifts in locomotion patterns.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34320403

RESUMO

Zebrafish (Danio rerio) are rapidly emerging in biomedicine as promising tools for disease modelling and drug discovery. The use of zebrafish for neuroscience research is also growing rapidly, necessitating novel reliable and unbiased methods of neurophenotypic data collection and analyses. Here, we applied the artificial intelligence (AI) neural network-based algorithms to a large dataset of adult zebrafish locomotor tracks collected previously in a series of in vivo experiments with multiple established psychotropic drugs. We first trained AI to recognize various drugs from a wide range of psychotropic agents tested, and then confirmed prediction accuracy of trained AI by comparing several agents with known similar behavioral and pharmacological profiles. Presenting a framework for innovative neurophenotyping, this proof-of-concept study aims to improve AI-driven movement pattern classification in zebrafish, thereby fostering drug discovery and development utilizing this key model organism.


Assuntos
Inteligência Artificial/tendências , Modelos Animais de Doenças , Desenvolvimento de Medicamentos , Locomoção/efeitos dos fármacos , Psicotrópicos/farmacologia , Peixe-Zebra/fisiologia , Algoritmos , Animais , Conjuntos de Dados como Assunto , Descoberta de Drogas , Redes Neurais de Computação
3.
Front Comput Neurosci ; 14: 588224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551782

RESUMO

Cerebral ("brain") organoids are high-fidelity in vitro cellular models of the developing brain, which makes them one of the go-to methods to study isolated processes of tissue organization and its electrophysiological properties, allowing to collect invaluable data for in silico modeling neurodevelopmental processes. Complex computer models of biological systems supplement in vivo and in vitro experimentation and allow researchers to look at things that no laboratory study has access to, due to either technological or ethical limitations. In this paper, we present the Biological Cellular Neural Network Modeling (BCNNM) framework designed for building dynamic spatial models of neural tissue organization and basic stimulus dynamics. The BCNNM uses a convenient predicate description of sequences of biochemical reactions and can be used to run complex models of multi-layer neural network formation from a single initial stem cell. It involves processes such as proliferation of precursor cells and their differentiation into mature cell types, cell migration, axon and dendritic tree formation, axon pathfinding and synaptogenesis. The experiment described in this article demonstrates a creation of an in silico cerebral organoid-like structure, constituted of up to 1 million cells, which differentiate and self-organize into an interconnected system with four layers, where the spatial arrangement of layers and cells are consistent with the values of analogous parameters obtained from research on living tissues. Our in silico organoid contains axons and millions of synapses within and between the layers, and it comprises neurons with high density of connections (more than 10). In sum, the BCNNM is an easy-to-use and powerful framework for simulations of neural tissue development that provides a convenient way to design a variety of tractable in silico experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...