Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959762

RESUMO

The thermal conductivity of epoxy nanocomposites filled with self-assembled hybrid nanoparticles composed of multilayered graphene nanoplatelets and anatase nanoparticles was described using an analytical model based on the effective medium approximation with a reasonable amount of input data. The proposed effective thickness approach allowed for the simplification of the thermal conductivity simulations in hybrid graphene@anatase TiO2 nanosheets by including the phenomenological thermal boundary resistance. The sensitivity of the modeled thermal conductivity to the geometrical and material parameters of filling particles and the host polymer matrix, filler's mass concentration, self-assembling degree, and Kapitza thermal boundary resistances at emerging interfaces was numerically evaluated. A fair agreement of the calculated and measured room-temperature thermal conductivity was obtained.

2.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641174

RESUMO

Multilayered graphene nanoplatelets (MLGs) were prepared from thermally expanded graphite flakes using an electrochemical technique. Morphological characterization of MLGs was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Raman spectroscopy (RS), and the Brunauer-Emmett-Teller (BET) method. DGEBA-epoxy-based nanocomposites filled with synthesized MLGs were studied using Static Mechanical Loading (SML), Thermal Desorption Mass Spectroscopy (TDMS), Broad-Band Dielectric Spectroscopy (BDS), and Positron Annihilation Lifetime Spectroscopy (PALS). The mass loading of the MLGs in the nanocomposites was varied between 0.0, 0.1, 0.2, 0.5, and 1% in the case of the SML study and 0.0, 1.0, 2, and 5% for the other measurements. Enhancements in the compression strength and the Young's modulus were obtained at extremely low loadings (C≤ 0.01%). An essential increase in thermal stability and a decrease in destruction activation energy were observed at C≤ 5%. Both the dielectric permittivity (ε1) and the dielectric loss factor (ε2) increased with increasing C over the entire frequency region tested (4 Hz-8 MHz). Increased ε2 is correlated with decreased free volume when increasing C. Physical mechanisms of MLG-epoxy interactions underlying the effects observed are discussed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-18276550

RESUMO

Standing-wave piezoelectric fields in the LiNbO(3) driving plate are used to form depleted and accumulated electron densities in GaAs/AlGaAs quantum wells (QWs). The photoluminescence spectrum of the two-dimensional electron system varies both spatially and temporally, exhibiting an electron-hole plasma recombination and exciton and trion emissions at large and small electron densities, respectively. Controlling the piezoelectric field component perpendicular to the QW layers offers a versatile tool to achieve the spatially indirect exciton luminescence in double QW structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...