Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015593

RESUMO

The use of polymer-composite materials for strengthening the reinforcing of concrete structures represents a current scientific trend. The article is devoted to experimental studies of the strength of inclined sections of bent concrete elements, reinforced with transverse polymer reinforcement with initial inclined cracks, with different shear spans and transverse reinforcement options. The characteristics of reinforced concrete specimens with initial inclined cracks and the test results of 22 experimental beams, each of which was tested twice, are given. A significant influence of all eight variable factors was established: three spans of the section, equal to 1.5 h0; 2 h0 and 2.5 h0; two types of compound clamps and their layout; and opening width of oblique cracks from 0.6 to 0.9 mm. It is shown that the strengthening of the beams supporting sections with external polymer reinforcement using three-sided U-shaped and vertical double-sided stirrups significantly changes their stress-strain state (SSS) and the form of destruction. SSS transforms from the classical destruction of the compressed zone above the end of the inclined crack to the destruction of the beam zone of average height at α = 2.0 and brittle crushing of concrete in the tension zone. Unfavorable combinations of force and geometric factors are revealed. Recommendations are proposed that can be used for structures operated in all weather conditions.

2.
Polymers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36616376

RESUMO

Currently, many studies are devoted to the use of polymer composite materials to increase the strength and stability of concrete elements. In compressed reinforced concrete elements, the bearing capacity depends on the eccentricity of the external application of the external force and the corresponding stress-strain state, as well as the location and number of composite materials glued to the surface of the structure. The choice of a scheme for placing composite materials depending on the stress state of the structure is an urgent scientific problem. At the same time, the issue of central compression and the compression of columns with large eccentricities has been well studied. However, studies conducted in the range of average eccentricities often have conflicting results, which is the problem area of this study. The primary aim of this study was to increase the strength and stiffness of compressed reinforced concrete elements reinforced with composite materials, as well as a comparative analysis of the bearing capacity of ten different combinations of external longitudinal, transverse, and combined reinforcement. The results of testing 16 compressed columns under the action of various eccentricities of external load application (e0/h = 0; 0.16; 0.32) are presented. It is shown that the use of composite materials in strengthening structures increases the bearing capacity up to 41%, and the stiffness of the sections increases up to 30%. Based on the results of the study, recommendations are proposed for improving the calculation method for inflexible columns reinforced in the transverse direction, which take the work of concrete under the conditions of a three-dimensional stress state into consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...