Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25871107

RESUMO

We study in experiment and with computer simulation the free energy and the kinetics of vacancy and interstitial defects in two-dimensional dipolar crystals. The defects appear in different local topologies, which we characterize by their point group symmetry; Cn is the n-fold cyclic group and Dn is the dihedral group, including reflections. The frequency of different local topologies is not determined by their almost degenerate energies but is dominated by entropy for symmetric configurations. The kinetics of the defects is fully reproduced by a master equation in a multistate Markov model. In this model, the system is described by the state of the defect and the time evolution is given by transitions occurring with particular rates. These transition rate constants are extracted from experiments and simulations using an optimization procedure. The good agreement between experiment, simulation, and master equation thus provides evidence for the accuracy of the model.

2.
Artigo em Inglês | MEDLINE | ID: mdl-24483371

RESUMO

Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

3.
Langmuir ; 26(11): 8301-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20420416

RESUMO

Within this study, the influence of ester groups in mixed monolayers on the surface properties will be discussed. Detailed investigations on the macroscopic and microscopic characteristics on mixed monolayers with different content of ester groups in an alkyl surrounding are done by contact angle measurements and atomic force spectroscopy. Density functional theory (DFT) calculations show a statistical distribution and a directed orientation of the ester molecules. In the experiments an increasing amount of ester groups leads to a fast increasing polarity followed by a nearly constant polarity in the regime of 25% and 40% of ester in the monolayer and a further increase at higher amounts of ester groups, which clearly differ from the behavior expected by Cassie. By DFT calculations it can be shown that water molecules form ring-like structures around the ester group. These solvent shells increase the hydrophilic fraction on the surface explaining the disproportional growth in the polarity of the monolayer. This rise in polarity is maximal for single ester groups (monomers) or dimers of esters. The amount of these monomers and dimers is estimated by Monte Carlo simulation showing clearly that the linear regime at fractions between 0.25 and 0.4 are caused by the transition from mainly monomers to mainly dimers. Thus, we show for the first time that adsorbed water molecules forming a solvent shell around hydrophilic groups in hydrophobic surroundings influence the surface properties of mixed monolayers on a macroscopic and microscopic scale which therefore must be taken into account when preparing, investigating, using and understanding such monolayers.


Assuntos
Modelos Teóricos , Microscopia de Força Atômica , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...