Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6465)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672866

RESUMO

The nature of type Ia supernovae (SNIa)-thermonuclear explosions of white dwarf stars-is an open question in astrophysics. Virtually all existing theoretical models of normal, bright SNIa require the explosion to produce a detonation in order to consume all of stellar material, but the mechanism for the deflagration-to-detonation transition (DDT) remains unclear. We present a unified theory of turbulence-induced DDT that describes the mechanism and conditions for initiating detonation both in unconfined chemical and thermonuclear explosions. The model is validated by using experiments with chemical flames and numerical simulations of thermonuclear flames. We use the developed theory to determine criteria for detonation initiation in the single-degenerate Chandrasekhar-mass SNIa model and show that DDT is almost inevitable at densities of 107 to 108 grams per cubic centimeter.

2.
Phys Rev Lett ; 107(5): 054501, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867073

RESUMO

A deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or preexisting shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction-wave model. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...