Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 212: 108774, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597676

RESUMO

The nee mouse model exhibits characteristic features of congenital glaucoma, a common cause of childhood blindness. The current study of nee mice had two components. First, the time course of neurodegeneration in nee retinal flat-mounts was studied over time using a retinal ganglion cell (RGC)-marker, BRN3A; a pan-nuclear marker, TO-PRO-3; and H&E staining. Based on segmentation of nuclei using ImageJ and RetFM-J, this analysis identified a rapid loss of BRN3A+ nuclei from 4 to 15 weeks of age, with the first statistically significant difference in average density compared to age-matched controls detected in 8-week-old cohorts (49% reduction in nee). Consistent with a model of glaucoma, no reductions in BRN3A- nuclei were detected, but the combined analysis indicated that some RGCs lost BRN3A marker expression prior to actual cell loss. These results have a practical application in the design of experiments using nee mice to study mechanisms or potential therapies for congenital glaucoma. The second component of the study pertains to a discovery-based analysis of the large amount of image data with 748,782 segmented retinal nuclei. Using the automatedly collected region of interest feature data captured by ImageJ, we tested whether RGC density of glaucomatous mice was significantly correlated to average nuclear area, perimeter, Feret diameter, or MinFeret diameter. These results pointed to two events influencing nuclear size. For variations in RGC density above approximately 3000 nuclei/mm2 apparent spreading was observed, in which BRN3A- nuclei-regardless of genotype-became slightly larger as RGC density decreased. This same spreading occurred in BRN3A+ nuclei of wild-type mice. For variation in RGC density below 3000 nuclei/mm2, which only occurred in glaucomatous nee mutants, BRN3A+ nuclei became smaller as disease was progressively severe. These observations have relevance to defining RGCs of relatively higher sensitivity to glaucomatous cell death and the nuclear dynamics occurring during their demise.


Assuntos
Núcleo Celular/patologia , Glaucoma/patologia , Células Ganglionares da Retina/metabolismo , Tomografia de Coerência Óptica/métodos , Animais , Contagem de Células , Modelos Animais de Doenças , Glaucoma/congênito , Glaucoma/metabolismo , Camundongos , Camundongos Mutantes , Células Ganglionares da Retina/patologia
2.
Mol Vis ; 27: 741-756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35136346

RESUMO

PURPOSE: Ocular tissues of mice have been studied in many ways using replication-deficient species C type 5 adenovirus (Ad5) as a tool for manipulating gene expression. Whereas refinements to injection protocols and tropism have led to several advances in targeting cells of interest, there remains a relative lack of information concerning how Ad5 may influence other ocular cell types capable of confounding experimental interpretation. Here, a slit lamp is used to thoroughly photodocument the sequelae of intraocular Ad5 injections over time in mice, with attention to potentially confounding indices of inflammation. METHODS: A cohort of C57BL/6J mice was randomly split into three groups (Virus, receiving unilateral intracameral injection with 5×107 plaque-forming units (pfu) of a cargo-less Ad5 construct; Saline, receiving unilateral balanced salt solution injection; and Naïve, receiving no injections). From this initial experiment, a total of 52 eyes from 26 mice were photodocumented via slit lamp at four time points (baseline and 1, 3, and 10 weeks following initiation of the experiment) by an observer masked to treatments and other parameters of the experimental design. Following the last in vivo exam, tissues were collected. Based on the slit-lamp data, tissues were studied via immunostaining with the macrophage marker F4/80. Subsequently, three iterations of the original experiment were performed with otherwise identical experimental parameters testing the effect of age, intravitreal injection, and A195 buffer, adding slit-lamp photodocumentation of an additional 32 eyes from 16 mice. RESULTS: The masked investigator could use the sequential images from each mouse in the initial experiment to assign each mouse to its correct treatment group with near perfect fidelity. Virus-injected eyes were characterized by corneal damage indicative of intraocular injection and a prolonged mobilization of clump cells on the surface of the iris. Saline-injected eyes had only transient corneal opacities indicative of intraocular injections, and Naïve eyes remained normal. Immunostaining with F4/80 was consistent with ascribing the clump cells visualized via slit-lamp imaging as a type of macrophage. Experimental iterations using Ad5 indicate that all virus-injected eyes had the distinguishing feature of a prolonged presence of clump cells on the surface of the iris regardless of injection site. Mice receiving an intraocular injection of Ad5 at an advanced age displayed a protracted course of corneal cloudiness that prevented detailed visualization of the iris at the last time point. CONCLUSIONS: Because the eye is often considered an "immune privileged site," we suspect that several studies have neglected to consider that the presence of Ad5 in the eye might evoke strong reactions from the innate immune system. Ad5 injection caused a sustained mobilization of clump cells-that is, macrophages. This change is likely a consequence of either direct macrophage transduction or a secondary response to cytokines produced locally by other transduced cells. Regardless of how these cells were altered, the important implication is that the adenovirus led to long-lasting changes in the environment of the anterior chamber. Thus, these findings describe a caveat of Ad5-mediated studies involving macrophage mobilization, which we encourage groups to use as a bioassay in their experiments and consider in interpretation of their ongoing experiments using adenoviruses.


Assuntos
Adenoviridae , Câmara Anterior , Animais , Camundongos , Adenoviridae/genética , Injeções Intraoculares , Macrófagos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...