Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 9: 904341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686209

RESUMO

Often in swarm robotics, an assumption is made that all robots in the swarm behave the same and will have a similar (if not the same) error model. However, in reality, this is not the case, and this lack of uniformity in the error model, and other operations, can lead to various emergent behaviors. This paper considers the impact of the error model and compares robots in a swarm that operate using the same error model (uniform error) against each robot in the swarm having a different error model (thus introducing error diversity). Experiments are presented in the context of a foraging task. Simulation and physical experimental results show the importance of the error model and diversity in achieving the expected swarm behavior.

2.
Front Robot AI ; 5: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500944

RESUMO

As the number of robots used in warehouses and manufacturing increases, so too does the need for robots to be able to manipulate objects, not only independently, but also in collaboration with humans and other robots. Our ability to effectively coordinate our actions with fellow humans encompasses several behaviours that are collectively referred to as joint action, and has inspired advances in human-robot interaction by leveraging our natural ability to interpret implicit cues. However, our capacity to efficiently coordinate on object manipulation tasks remains an advantageous process that is yet to be fully exploited in robotic applications. Humans achieve this form of coordination by combining implicit communication (where information is inferred) and explicit communication (direct communication through an established channel) in varying degrees according to the task at hand. Although these two forms of communication have previously been implemented in robotic systems, no system exists that integrates the two in a task-dependent adaptive manner. In this paper, we review existing work on joint action in human-robot interaction, and analyse the state-of-the-art in robot-robot interaction that could act as a foundation for future cooperative object manipulation approaches. We identify key mechanisms that must be developed in order for robots to collaborate more effectively, with other robots and humans, on object manipulation tasks in shared autonomy spaces.

3.
J Struct Biol ; 157(1): 106-16, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16879984

RESUMO

Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods.


Assuntos
Canais de Cálcio Tipo P/química , Processamento de Imagem Assistida por Computador/métodos , ATPase Trocadora de Sódio-Potássio/química , Animais , Biologia Computacional , Cristalização , Proteínas de Membrana/química , Microscopia Eletrônica/métodos , Modelos Moleculares , Pectinidae , Coelhos
4.
Biophys J ; 90(11): 4213-23, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16533842

RESUMO

Phospholamban (PLB) physically interacts with Ca(2+)-ATPase and regulates contractility of the heart. We have studied this interaction using electron microscopy of large two-dimensional co-crystals of Ca(2+)-ATPase and the I40A mutant of PLB. Crystallization conditions were derived from those previously used for thin, helical crystals, but the addition of a 10-fold higher concentration of magnesium had a dramatic effect on the crystal morphology and packing. Two types of crystals were observed, and were characterized both by standard crystallographic methods and by electron tomography. The two crystal types had the same underlying lattice, which comprised antiparallel dimer ribbons of Ca(2+)-ATPase molecules previously seen in thin, helical crystals, but packed into a novel lattice with p22(1)2(1) symmetry. One crystal type was single-layered, whereas the other was a flattened tube and therefore double-layered. Additional features were observed between the dimer ribbons, which were substantially farther apart than in previous helical crystals. We attributed these additional densities to PLB, and built a three-dimensional model to show potential interactions with Ca(2+)-ATPase. These densities are most consistent with the pentameric form of PLB, despite the use of the presumed monomeric I40A mutant. Furthermore, our results indicate that this pentameric form of PLB is capable of a direct interaction with Ca(2+)-ATPase.


Assuntos
Proteínas de Ligação ao Cálcio/química , ATPases Transportadoras de Cálcio/química , Modelos Moleculares , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/ultraestrutura , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/ultraestrutura , Microscopia Crioeletrônica , Cristalização , Músculo Esquelético/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...