Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293449

RESUMO

Glutamate excitotoxicity is involved in the pathogenesis of many disorders, including stroke, traumatic brain injury, and Alzheimer's disease, for which central insulin resistance is a comorbid condition. Neurotoxicity of glutamate (Glu) is primarily associated with hyperactivation of the ionotropic N-methyl-D-aspartate receptors (NMDARs), causing a sustained increase in intracellular free calcium concentration ([Ca2+]i) and synchronous mitochondrial depolarization and an increase in intracellular superoxide anion radical (O2-•) production. Recently, we found that insulin protects neurons against excitotoxicity by decreasing the delayed calcium deregulation (DCD). However, the role of insulin in O2-• production in excitotoxicity still needs to be clarified. The present study aims to investigate insulin's effects on glutamate-evoked O2-• generation and DCD using the fluorescent indicators dihydroethidium, MitoSOX Red, and Fura-FF in cortical neurons. We found a linear correlation between [Ca2+]i and [O2-•] in primary cultures of the rat neuron exposed to Glu, with insulin significantly reducing the production of intracellular and mitochondrial O2-• in the primary cultures of the rat neuron. MK 801, an inhibitor of NMDAR-gated Ca2+ influx, completely abrogated the glutamate effects in both the presence and absence of insulin. In experiments in sister cultures, insulin diminished neuronal death and O2 consumption rate (OCR).


Assuntos
Ácido Glutâmico , Superóxidos , Ratos , Animais , Ácido Glutâmico/metabolismo , Superóxidos/metabolismo , Citosol/metabolismo , Cálcio/metabolismo , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
2.
J Immunol Res ; 2021: 4414544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616852

RESUMO

COVID-19 is a respiratory infection caused by the SARS-CoV-2 virus that can rapidly escalate to life-threatening pneumonia and acute respiratory distress syndrome (ARDS). Recently, extracellular high mobility group box 1 (HMGB1) has been identified as an essential component of cytokine storms that occur with COVID-19; HMGB1 levels correlate significantly with disease severity. Thus, the modulation of HMGB1 release may be vital for treating COVID-19. HMGB1 is a ubiquitous nuclear DNA-binding protein whose biological function depends on posttranslational modifications, its redox state, and its cellular localization. The acetylation of HMGB1 is a prerequisite for its translocation from the nucleus to the cytoplasm and then to the extracellular milieu. When released, HMGB1 acts as a proinflammatory cytokine that binds primarily to toll-like receptor 4 (TLR4) and RAGE, thereby stimulating immune cells, endothelial cells, and airway epithelial cells to produce cytokines, chemokines, and other inflammatory mediators. In this study, we demonstrate that inhaled [D-Ala2]-dynorphin 1-6 (leytragin), a peptide agonist of δ-opioid receptors, significantly inhibits HMGB1 secretion in mice with lipopolysaccharide- (LPS-) induced acute lung injury. The mechanism of action involves preventing HMGB1's hyperacetylation at critical lysine residues within nuclear localization sites, as well as promoting the expression of sirtuin 1 (SIRT1), an enzyme known to deacetylate HMGB1. Leytragin's effects are mediated by opioid receptors, since naloxone, an antagonist of opioid receptors, abrogates the leytragin effect on SIRT1 expression. Overall, our results identify leytragin as a promising therapeutic agent for the treatment of pulmonary inflammation associated with HMGB1 release. In a broader context, we demonstrate that the opioidergic system in the lungs may represent a promising target for the treatment of inflammatory lung diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Dinorfinas/farmacologia , Proteína HMGB1/metabolismo , Acetilação , Lesão Pulmonar Aguda/metabolismo , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Receptores Opioides/metabolismo , Sirtuína 1/metabolismo , Tratamento Farmacológico da COVID-19
3.
Life (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810179

RESUMO

Current hypotheses implicate insulin resistance of the brain as a pathogenic factor in the development of Alzheimer's disease and other dementias, Parkinson's disease, type 2 diabetes, obesity, major depression, and traumatic brain injury. A variety of genetic, developmental, and metabolic abnormalities that lead to disturbances in the insulin receptor signal transduction may underlie insulin resistance. Insulin receptor substrate proteins are generally considered to be the node in the insulin signaling system that is critically involved in the development of insulin insensitivity during metabolic stress, hyperinsulinemia, and inflammation. Emerging evidence suggests that lower activation of the insulin receptor (IR) is another common, while less discussed, mechanism of insulin resistance in the brain. This review aims to discuss causes behind the diminished activation of IR in neurons, with a focus on the functional relationship between mitochondria and IR during early insulin signaling and the related roles of oxidative stress, mitochondrial hypometabolism, and glutamate excitotoxicity in the development of IR insensitivity to insulin.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33127424

RESUMO

Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Comportamento Social , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Dopamina/genética , Masculino , Camundongos , Camundongos Transgênicos , Norepinefrina/genética , Ratos , Ratos Wistar , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Triptofano Hidroxilase/genética
5.
J Cell Mol Med ; 24(17): 10251-10257, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32667139

RESUMO

Genetic mutations in FUS, a DNA/RNA-binding protein, are associated with inherited forms of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A novel transgenic FUS[1-359]-tg mouse line recapitulates core hallmarks of human ALS in the spinal cord, including neuroinflammation and neurodegeneration, ensuing muscle atrophy and paralysis, as well as brain pathomorphological signs of FTLD. However, a question whether FUS[1-359]-tg mouse displays behavioural and brain pro-inflammatory changes characteristic for the FTLD syndrome was not addressed. Here, we studied emotional, social and cognitive behaviours, brain markers of inflammation and plasticity of pre-symptomatic FUS[1-359]-tg male mice, a potential FTLD model. These animals displayed aberrant behaviours and altered brain expression of inflammatory markers and related pathways that are reminiscent to the FTLD-like syndrome. FTLD-related behavioural and molecular Journal of Cellular and Molecular Medicine features were studied in the pre-symptomatic FUS[1-359]-tg mice that received standard or new ALS treatments, which have been reported to counteract the ALS-like syndrome in the mutants. We used anti-ALS drug riluzole (8 mg/kg/d), or anti-inflammatory drug, a selective blocker of cyclooxygenase-2 (celecoxib, 30 mg/kg/d) for 3 weeks, or a single intracerebroventricular (i.c.v.) infusion of human stem cells (Neuro-Cells, 500 000-CD34+ ), which showed anti-inflammatory properties. Signs of elevated anxiety, depressive-like behaviour, cognitive deficits and abnormal social behaviour were less marked in FUS-tg-treated animals. Applied treatments have normalized protein expression of interleukin-1ß (IL-1ß) in the prefrontal cortex and the hippocampus, and of Iba-1 and GSK-3ß in the hippocampus. Thus, the pre-symptomatic FUS[1-359]-tg mice demonstrate FTLD-like abnormalities that are attenuated by standard and new ALS treatments, including Neuro-Cell preparation.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Degeneração Lobar Frontotemporal/tratamento farmacológico , Degeneração Lobar Frontotemporal/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Mutação/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Comportamento Social , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
6.
F1000Res ; 9: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552476

RESUMO

Since the discovery of insulin and insulin receptors (IR) in the brain in 1978, numerous studies have revealed a fundamental role of IR in the central nervous system and its implication in regulating synaptic plasticity, long-term potentiation and depression, neuroprotection, learning and memory, and energy balance. Central insulin resistance has been found in diverse brain disorders including Alzheimer's disease (AD). Impaired insulin signaling in AD is evident in the activation states of IR and downstream signaling molecules. This is mediated by Aß oligomer-evoked Ca 2+ influx by activating N-methyl-D-aspartate receptors (NMDARs) with Aß oligomers directly, or indirectly through Aß-induced release of glutamate, an endogenous NMDAR ligand. In the present opinion article, we highlight evidence that IR and free intracellular Ca 2+ concentration [Ca 2+] i form a double-negative regulatory feedback loop controlling insulin sensitivity, in which mitochondria play a key role, being involved in adenosine triphosphate (ATP) synthesis and IR activation. We found recently that the glutamate-evoked rise in [Ca 2+] i inhibits activation of IR and, vice versa, insulin-induced activation of IR inhibits the glutamate-evoked rise in [Ca 2+] i . In theory, such a double-negative feedback loop generates bistability. Thus, a stable steady state could exist with high [Ca 2+] i and nonactive IR, or with active IR and low [Ca 2+] i, but no stable steady state is possible with both high [Ca 2+] i and active IR. Such a circuit could toggle between a high [Ca 2+] i state and an active IR state in response to glutamate and insulin, respectively. This model predicts that any condition leading to an increase of [Ca 2+] i may trigger central insulin resistance and explains why central insulin resistance is implicated in the pathogenesis of AD, with which glutamate excitotoxicity is a comorbid condition. The model also predicts that any intervention aiming to maintain low [Ca 2+] i may be useful for treating central insulin resistance.


Assuntos
Cálcio/fisiologia , Retroalimentação Fisiológica , Resistência à Insulina , Receptor de Insulina/fisiologia , Doença de Alzheimer , Ácido Glutâmico/fisiologia , Humanos , Receptores de N-Metil-D-Aspartato/fisiologia
7.
Mol Brain ; 12(1): 112, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856878

RESUMO

AIM: An impaired biological response to insulin in the brain, known as central insulin resistance, was identified during stroke and traumatic brain injury, for which glutamate excitotoxicity is a common pathogenic factor. The exact molecular link between excitotoxicity and central insulin resistance remains unclear. To explore this issue, the present study aimed to investigate the effects of glutamate-evoked increases in intracellular free Ca2+ concentrations [Ca2+]i and mitochondrial depolarisations, two key factors associated with excitotoxicity, on the insulin-induced activation of the insulin receptor (IR) and components of the Akt/ mammalian target of rapamycin (mTOR) pathway in primary cultures of rat cortical neurons. METHODS: Changes in [Ca2+]i and mitochondrial inner membrane potentials (ΔΨm) were monitored in rat cultured cortical neurons, using the fluorescent indicators Fura-FF and Rhodamine 123, respectively. The levels of active, phosphorylated signalling molecules associated with the IR/Akt/mTOR pathway were measured with the multiplex fluorescent immunoassay. RESULTS: When significant mitochondrial depolarisations occurred due to glutamate-evoked massive influxes of Ca2+ into the cells, insulin induced 48% less activation of the IR (assessed by IR tyrosine phosphorylation, pY1150/1151), 72% less activation of Akt (assessed by Akt serine phosphorylation, pS473), 44% less activation of mTOR (assessed by mTOR pS2448), and 38% less inhibition of glycogen synthase kinase ß (GSK3ß) (assessed by GSK3ß pS9) compared with respective controls. These results suggested that excitotoxic glutamate inhibits signalling via the IR/Akt/mTOR pathway at multiple levels, including the IR, resulting in the development of acute neuronal insulin resistance within minutes, as an early pathological event associated with excitotoxicity.


Assuntos
Ácido Glutâmico/toxicidade , Resistência à Insulina , Neurônios/patologia , Neurotoxinas/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
8.
Front Neurosci ; 13: 1027, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611766

RESUMO

Glutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer's disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca2+ ([Ca2+] i ), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research. In the present study, we investigated the effects of short-term insulin exposure on the dynamics of [Ca2+] i and mitochondrial potential in cultured rat cortical neurons during glutamate excitotoxicity. We found that insulin ameliorated the glutamate-evoked rise of [Ca2+] i and prevented the onset of DCD, the postulated point-of-no-return in excitotoxicity. Additionally, insulin significantly improved the glutamate-induced drop in mitochondrial potential, ATP depletion, and depletion of brain-derived neurotrophic factor (BDNF), which is a critical neuroprotector in excitotoxicity. Also, insulin improved oxygen consumption rates, maximal respiration, and spare respiratory capacity in neurons exposed to glutamate, as well as the viability of cells in the MTT assay. In conclusion, the short-term insulin exposure in our experiments was evidently a protective treatment against excitotoxicity, in a sharp contrast to chronic insulin exposure causal to neuronal insulin resistance, the adverse factor in excitotoxicity.

9.
CNS Neurosci Ther ; 24(9): 763-774, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29691988

RESUMO

While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.


Assuntos
Antígenos CD/metabolismo , Encéfalo/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Receptor de Insulina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Insulina/administração & dosagem , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/metabolismo , Receptor de Insulina/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resultado do Tratamento
10.
Front Immunol ; 9: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422898

RESUMO

Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation.


Assuntos
Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Macrófagos/classificação , Macrófagos/imunologia , Animais , Arginase/biossíntese , Autoimunidade/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Interferon gama/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Microglia/citologia , Microglia/imunologia , Receptores de Superfície Celular/biossíntese , Receptores Imunológicos
12.
Behav Brain Res ; 335: 122-127, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28803855

RESUMO

Glycogen synthase kinase 3 (GSK3) has been linked to the mechanisms of stress, mood regulation, and the effects of antidepressants. The functions of the GSK3ß isoform have been extensively investigated, but little is known about the α-isoform, although they may functionally related. In a recently established modified swim test with a third delayed swim exposure, brain GSK3ß mRNA expression positively correlated with floating behaviour on the third test. A two-week-long pretreatment regime with imipramine (7.5mg/kg/day) or thiamine (200mg/kg/day), which is known to have antidepressant properties, reduced the GSK3ß over-expression and decreased floating behaviour on Day 5. GSK3α mRNA levels were measured in the hippocampus and prefrontal cortex on Days 1, 2 and 5. GSK3α expression was decreased in the prefrontal cortex on Day 2 and increased on Day 5. In this model, GSK3α mRNA changes were prevented by imipramine or thiamine treatment. There was a significant correlation between the expression of the two isoforms in the prefrontal cortex on Day 2 in untreated group. These results provide the first evidence for the potential involvement of GSK3α in depressive-like behaviours and as a target of anti-depressant therapy. Furthermore, the correlations suggest some cross-talk may exist between the two GSK3 isoforms.


Assuntos
Antidepressivos/farmacologia , Encéfalo/enzimologia , Depressão/tratamento farmacológico , Depressão/enzimologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Imipramina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Isoformas de Proteínas , Transdução de Sinais/efeitos dos fármacos , Tiamina/farmacologia , Regulação para Cima
13.
Behav Brain Res ; 277: 237-44, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25092571

RESUMO

Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naïve mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naïve mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms.


Assuntos
Depressão/metabolismo , Transtorno Depressivo/fisiopatologia , Deutério/toxicidade , Serotonina/metabolismo , Água/química , Animais , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
14.
Behav Brain Res ; 276: 111-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24815315

RESUMO

Depression and diabetes are serious diseases with an increasing global prevalence. Intriguingly, recent meta-analyses have highlighted an asymmetrical relationship between the two conditions as depressed patients were found to display a higher risk of developing type 2 diabetes than those individuals suffering from diabetes are to become depressed. Based on recent findings, we favor a hypothesis where by decreased peripheral serotonin (5-HT) transporter (5-HTT) function is a reciprocal risk factor for the co-morbidity of depression and diabetes, as it can trigger inflammatory pathogenetic mechanisms of both conditions. Higher intestinal levels of 5-HT and 5-HT3 receptor stimulation lead to increased intestinal permeability in 5-HTT deficient mice, which is viewed one of the most relevant animal models of depression. We hypothesize that this leakage of bacterial endotoxins can activate both central and peripheral Toll-like receptor 4 (TLR4), which inhibits insulin signaling and IRS1/PI3K/Akt and thus, contribute to the pathogenesis of diabetes and depression that are associated with this pathway. Antidepressant therapies, which also suppress intestinal 5-HTT, may have potentiating effects on the association between depression and diabetes. It is also of interest that high carbohydrate and fat intake ("cafeteria-type diet") increases intestinal 5-HT leading to TLR4 activation. Thus, endotoxaemia and inflammation owing to increased intestinal 5-HT may underpin the depression and diabetes association, where the risk of the latter pathology becomes particularly preeminent after the onset of depression and not vice versa. The evidence presented here shows the further investigation into peripheral mechanisms that linked diabetes to depression is clearly warranted.


Assuntos
Depressão/epidemiologia , Depressão/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Endotoxemia/etiologia , Resistência à Insulina , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Antidepressivos/uso terapêutico , Comorbidade , Humanos , Inflamação/etiologia , Receptor de Insulina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Transdução de Sinais
15.
J Mol Signal ; 8(1): 11, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24094269

RESUMO

BACKGROUND: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date. RESULTS: Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5-10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose-response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process. CONCLUSIONS: In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.

16.
Curr Neuropharmacol ; 10(4): 311-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23730255

RESUMO

This review is focused on the mechanistic aspects of the insulin-induced H2O2 signalling pathway in neurons and the molecules affecting it, which act as risk factors for developing central insulin resistance. Insulin-induced H2O2 promotes insulin receptor activation and the mitochondria act as the insulin-sensitive H2O2 source, providing a direct molecular link between mitochondrial dysfunction and irregular insulin receptor activation. In this view, the accumulation of dysfunctional mitochondria during chronological ageing and Alzheimer's disease (AD) is a risk factor that may contribute to the development of dysfunctional cerebral insulin receptor signalling and insulin resistance. Due to the high significance of insulin-induced H2O2 for insulin receptor activation, oxidative stress-induced upregulation of antioxidant enzymes, e.g., in AD brains, may represent another risk factor contributing to the development of insulin resistance. As insulin-induced H2O2 signalling requires fully functional mitochondria, pharmacological strategies based on activating mitochondria biogenesis in the brain are central to the treatment of diseases associated with dysfunctional insulin receptor signalling in this organ.

17.
BMC Pharmacol ; 8: 1, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18215309

RESUMO

BACKGROUND: Accumulated evidence suggests that insulin resistance and impairments in cerebral insulin receptor signaling may contribute to age-related cognitive deficits and Alzheimer's disease. The enhancement of insulin receptor signaling is, therefore, a promising strategy for the treatment of age-related cognitive disorders. The mitochondrial respiratory chain, being involved in insulin-stimulated H2O2 production, has been identified recently as a potential target for the enhancement of insulin signaling. The aim of the present study is to examine: (1) whether a specific respiratory substrate, dicholine salt of succinic acid (CS), can enhance insulin-stimulated insulin receptor autophosphorylation in neurons, and (2) whether CS can ameliorate cognitive deficits of various origins in animal models. RESULTS: In a primary culture of cerebellar granule neurons, CS significantly enhanced insulin-stimulated insulin receptor autophosphorylation. In animal models, CS significantly ameliorated cognitive deficits, when administered intraperitoneally for 7 days. In 16-month-old middle-aged C57Bl/6 mice (a model of normal aging), CS enhanced spatial learning in the Morris water maze, spontaneous locomotor activity, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to the age-matched control (saline). In rats with chronic cerebral hypoperfusion, CS enhanced spatial learning, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to control rats (saline). In rats with beta-amyloid peptide-(25-35)-induced amnesia, CS enhanced passive avoidance performance and increased activity of brain choline acetyltransferase, as compared to control rats (saline). In all used models, CS effects lasted beyond the seven-day treatment period and were found to be significant about two weeks following the treatment. CONCLUSION: The results of the present study suggest that dicholine salt of succinic acid, a novel neuronal insulin sensitizer, ameliorates cognitive deficits and neuronal dysfunctions in animal models relevant to age-related cognitive impairments, vascular dementia, and Alzheimer's disease.


Assuntos
Envelhecimento/psicologia , Amnésia/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Colina/análogos & derivados , Transtornos Cognitivos/prevenção & controle , Insulina/farmacologia , Modelos Animais , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ácidos Pipecólicos/farmacologia , Ácido Succínico/farmacologia , Amnésia/induzido quimicamente , Animais , Colina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Receptor de Insulina/metabolismo
18.
BMC Neurosci ; 8: 84, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17919343

RESUMO

BACKGROUND: Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. RESULTS: Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. CONCLUSION: Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons.


Assuntos
Transporte de Elétrons/fisiologia , Peróxido de Hidrogênio/metabolismo , Insulina/farmacologia , Neurônios/metabolismo , Receptor de Insulina/metabolismo , Animais , Respiração Celular/fisiologia , Células Cultivadas , Insulina/metabolismo , Insulina/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia , Fosforilação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...