Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hazard Mater ; 161(2-3): 714-7, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18513863

RESUMO

The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-à-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (DeltaH(e)) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R(2)=0.9721 with a linear equation y=0.9262x+101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials.


Assuntos
Química/métodos , Algoritmos , Físico-Química/métodos , Substâncias Explosivas , Temperatura Alta , Modelos Estatísticos , Oxigênio/química , Software , Temperatura , Termodinâmica
2.
Talanta ; 69(3): 656-62, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970618

RESUMO

The contamination of soil by nitroaromatic and nitramine explosives is widespread during the manufacture, testing and disposal of explosives and ammunitions. The analysis for the presence of trace explosive contaminants in soil becomes important in the light of their effect on the growth of different varieties of plants and crops. 2,4,6-Trinitrotoluene (TNT), cyclotrimethylene trinitramine (Research Department explosive, RDX) and cyclotetramethylene tetranitramine (high melting point explosive, HMX), other related explosive compounds and their by-products must be monitored in soil and surrounding waterways since these are mutagenic, toxic and persistent pollutants that can leach from the contaminated soil to accumulate in the food chain. In this study, a voltammetric method has been developed for the determination of explosive such as RDX, HMX and TNT. The electrochemical redox behavior of RDX, HMX and TNT was studied through cyclic voltammetry and quantitative determination was carried out by using square wave voltammetry technique. Calibration curves were drawn and were linear in the range of 63-129ppm for RDX with a detection limit of 10ppm, 49-182ppm for HMX with a detection limit of 1ppm and 38-139ppm for TNT with a detection limit of 1ppm. This method was applied to determine the contaminations in several soil samples that yielded a relative error of 1% in the concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...