Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
RSC Adv ; 13(44): 30575-30585, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859778

RESUMO

Bioceramic materials have a wide range of applications in the biomedical field, such as in the repair of bone defects and dental surgery. Silicate-based bioceramics have attracted biomedical researchers' interest due to their bioactivity and biodegradability. In this study, extended the scope of ZAS utilization in bone tissue engineering by introducing calcium-magnesium-silicate (diopside, CMS) as an interface material aim to develop a machinable bioceramic composite (ZASCMS) by the sol-gel method. The physicochemical characterization, in vitro biological properties and in vivo zebrafish cytotoxicity study of ZAS-based composites as a function of CMS contents, 0, 25, 50, 75 and 100 wt%, were performed. Results showed that the as-prepared ZASCMS possessed porous architecture with well-interconnected pore structure. Results also revealed that the mechanical properties of ZASCMS composite materials were gradually improved with increasing CMS contents. The ZASCMS composites with more than 50 wt% CMS had the highest compressive strength and modulus of 6.78 ± 0.62 MPa and 340.10 ± 16.81 MPa, respectively. Regarding in vitro bioactivities, the composite scaffolds were found to stimulate osteoblast-like UMR-106 cell adhesion, growth, and proliferation. The antibacterial activity of the ZASCMS composite scaffolds was tested against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli) also exhibited an antibacterial property. Furthermore, the in vivo studies using embryonic zebrafish were exposed to as-prepared particles (0-500 µg mL-1) and showed that the synthesized ZAS, CMS and ZASCMS composite particles were non-toxic based on the evaluation of survivability, hatching rate and embryonic morphology. In conclusions, our results indicated that the synthesized composite exhibited their biological properties and antibacterial activity, which could well be a promising material with high potential to be applied in orthopaedic and dental tissue engineering.

3.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678008

RESUMO

Synthesized hydroxyapatite (sHA)-calcium phosphate (CaP) based biomaterials play a vital role and have been widely used in the process of bone regeneration for bone defect repair, due to their similarities to the inorganic components of human bones. However, for bone tissue engineering purpose, the composite components, physical and biological properties, efficacy and safety of sHA still need further improvements. In this work, we synthesized inhomogeneous hydroxyapatite based on biomimetic trace elements (Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr, Co, BO33-, and CO32-) co-doped into HA (THA) (Ca10-δMδ(PO4)5.5(CO3)0.5(OH)2, M = trace elements) via co-precipitation from an ionic solution. The physical properties, their bioactivities using in vitro osteoblast cells, and in vivo cytotoxicity using zebrafish were studied. By introducing biomimetic trace elements, the as-prepared THA samples showed nanorod (needle-like) structures, having a positively charged surface (6.49 meV), and showing paramagnetic behavior. The bioactivity studies demonstrated that the THA substrate can induce apatite particles to cover its surface and be in contact with surrounding simulated body fluid (SBF). In vitro biological assays revealed that the osteoblast-like UMR-106 cells were well-attached with growth and proliferation on the substrate's surface. Upon differentiation, enhanced ALP (alkaline phosphatase) activity was observed for bone cells on the surface of the THA compared with that on the control substrates (sHA). The in vivo performance in embryonic zebrafish studies showed that the synthesized THA particles are nontoxic based on the measurements of essential parameters such as survivability, hatching rate, and the morphology of the embryo. The mechanism of the ions release profile using digital conductivity measurement revealed that sustained controlled release was successfully achieved. These preliminary results indicated that the synthesized THA could be a promising material for potential practical applications in bone tissue engineering.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889628

RESUMO

Sulfur composites consisting of electrochemical reactive catalysts/conductive materials are investigated for use in lithium-sulfur (Li-S) batteries (LSBs). In this paper, we report the synthesis, physicochemical and electrochemical properties of CuZnS quantum dots (CZSQDs) decorated with nickel-cobalt-sulfide ((NiCo)-S)) mixed with reduced graphene oxide (rGO)/oxidized carbon nanotube (oxdCNT) (rGO/oxdCNT) ((NiCo)-S@rGO/oxdCNT) composites. These composites are for the purpose of being the sulfur host cathode in Li-S batteries. The as-prepared composites showed a porous structure with the CZSQDs being uniformly found on the surface of the rGO/oxdCNT, which had a specific surface area of 26.54 m2/g. Electrochemical studies indicated that the (NiCo)-S@rGO/oxdCNT cells forming the cathode exhibited a maximum capacity of 1154.96 mAhg-1 with the initial discharge at 0.1 C. The smaller size of the CZSQDs (~10 nm) had a positive effect on the CZSQDs@(NiCo)-S@rGO/oxdCNT composites in that they had a higher initial discharge capacity of 1344.18 mAhg-1 at 0.1 C with the Coulombic efficiency being maintained at almost 97.62% during cycling. This latter property is approximately 1.16 times more compared to the absence of the Cu-Zn-S QD loading. This study shows that the CuZnS quantum dots decorated with a (NiCo)-S@rGO/oxdCNT supporting matrix-based sulfur cathode have the potential to improve the performance of future lithium-sulfur batteries.

5.
RSC Adv ; 11(56): 35258-35267, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35493192

RESUMO

Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields. In this study, we report the fabrication of biocompatible magneto-fluorescence nanoparticles consisting of carbon dots (CDots) and silica-coated cobalt-manganese nanoferrites (Co0.5Mn0.5Fe2O4) (CoMnF@Si@CDots) (MagSiCDots) by a facile hydrothermal method. The as-prepared MagSiCDots have a particle size of 100-120 nm and show a negative zeta potential of -35.50 mV at a neutral pH. The fluorescence spectrum of the MagSiCDots nanoparticles consists of sharp excitation at 365 nm and broad blue light emission with a maximum wavelength of 442.5 nm and the MagSiCDots exhibit superparamagnetic behaviour with a saturation magnetization of 11.6 emu g-1. The potential of MagSiCDots as a fluorescent sensor and be used for magnetic hyperthermia applications. It is seen that the fluorescent intensity of a colloidal solution (a hydrogen sulfide (H2S) solution containing MagSiCDots nanoparticles) has a linear relationship with the H2S concentration range of 0.2-2 µM. The limit of detection (LOD) of H2S by our MagSiCDots particles is 0.26 µM and they remain stable for at least 90 min. To test the suitability of the MagSiCDots nanoparticles for use in hyperthermia application, induction heating using an AMF was done. It was observed that these nanoparticles had a specific absorption rate (SAR) of 28.25 W g-1. The in vitro and in vivo cytotoxicity of MagSiCDots were tested on HeLa cells lines. The results show a cell viability of about 85% when exposed to 100 µg mL-1 concentration of the particles. The in vivo cytotoxicity using zebrafish assay also confirmed the non-toxicity and biocompatibility of the nanoparticles to living cells. The reported data demonstrate that by combining CoMnF@Si and fluorescent CDots into a single system, not only nontoxic multifunctional nanomaterials but also multimodal nanoparticles for several applications, such as hazard gas detection and acting as a biocompatible heat source for therapeutic treatment of cancer, are provided.

6.
RSC Adv ; 10(66): 40206-40214, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520877

RESUMO

Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine. In this study, we have prepared magnetic Mn-Zn ferrite ((Mn,Zn)Fe2O4) (MZF) nanoparticles coated with chitosan-g-N-isopropylacrylamide (Chi-g-NIPAAm) polymer (MZF@Chi-g-NIPAAm) to deliver the anticancer drug (Doxorubicin, DOX) and bioactive proteins (Bone morphogenic protein (BMP-2)-immobilized bovine serum albumin (BSA)) (P//MZF@Chi-g-NIPAAm) and be used as chemo-hyperthermia and vector delivering biomolecules. For these purposes, we first show that the as-prepared MZF@Chi-g-NIPAAm particles exhibit super paramagnetic behavior and under certain conditions, they can act as a heat source with a specific absorption rate (SAR) of 34.88 W g-1. Under acidic conditions and in the presence of AMF, the fast release of DOX was seen at around 58.9% within 20 min. In vitro evaluations indicated that concurrent thermo-chemotherapy treatment by DOX-MZF@Chi-g-NIPAAm using AMF had a better antitumor effect, compared with those using either DOX or DOX-MZF@Chi-g-NIPAAm without AMF (89.02% of cells were killed as compared to 71.82% without AMF exposure). Up to 28.18% of the BSA (used as the model protein to determine the controlled release) is released from the P//MZF@Chi-g-NIPAAm particles under AMF exposure for 1 h (only 17.31% was released without AMF). These results indicated that MZF@Chi-g-NIPAAm particles could be used to achieve hyperthermia at a precise location, effectively enhancing the chemotherapy treatments, and have a promising future as drug or bioactive delivering molecules for cancer treatment and cartilage or bone regenerative applications.

7.
Biomed Phys Eng Express ; 6(5): 055004, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33444235

RESUMO

New bioactive scaffolds with improved mechanical properties, biocompatibility and providing structural support for bone tissue are being developed for use in the treatment of bone defects. In this study, we have synthesized bioactive scaffolds consisting of biphasic calcium phosphate (BCP) and zirconia-Mullite (2ZrO2·[3Al2O3 ·2 SiO2] (ZAS)) (BCPZAS) combined with polymers matrix of polycaprolactone (PCL)-alginate (Alg)-chitosan (Chi) (Chi/Alg-PCL) (BCPZAS@Chi/Alg-PCL). The composite material scaffolds were prepared by a blending technique. The microstructure, mechanical, bioactivity and in vitro biological properties with different ratios of BCP to ZAS of 1:0, 3:1, 1:1, 1:3 and 0:1 wt% in polymer matrix were analyzed. Microstructure analysis showed a successful incorporation of the BCPZAS particles with an even distribution of them within the polymer matrix. The mechanical properties were found to gradually decrease with increasing the ratio of ZAS particles in the scaffolds. The highest compressive strength was 42.96 ± 1.01MPa for the 3:1 wt% BCP to ZAS mixing. Bioactivity test, the BCPZAS@Chi/Alg-PCL composite could induce apatite formation in simulate body fluid (SBF). In-vitro experiment using UMR-106 osteoblast-like cells on BCPZAS@Chi/Alg-PCL composite scaffold showed that there is cell attachment to the scaffolds with proliferation. These experimental results demonstrate that the BCPZAS@Chi/Alg-PCL composite especially for the BCP:ZAS at 3:1 wt% could be utilized as a scaffold for bone tissue engineering applications.


Assuntos
Osso e Ossos/citologia , Fosfatos de Cálcio/química , Osteoblastos/citologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Zircônio/química , Silicatos de Alumínio/química , Animais , Cerâmica/química , Ratos
8.
ACS Omega ; 4(16): 16916-16924, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31646238

RESUMO

Resistive-based gas sensors have been considered as the most favorable gas sensors for detection of toxic gases and volatile organic compounds (VOCs) because of their simple structure, low cost, high sensitivity, ease of use, and high stability. Unfortunately, wide application of resistive-based gas sensors is limited by their low selectivity. In this article, we present the fabrication of ultrahigh selective NH3 gas sensor based on tin-titanium dioxide/reduced graphene/carbon nanotube (Sn-TiO2@rGO/CNT) nanocomposites. The Sn-TiO2@rGO/CNT nanocomposites with different molar ratios of Sn/Ti (1:10, 3:10, and 5:10) were synthesized via the solvothermal method. Characterizations by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy confirmed the decoration of Sn-TiO2 nanoparticles on rGO/CNT nanocomposite surfaces. The Sn-TiO2@rGO/CNT nanocomposite gas sensor exhibited high response and ultrahigh selectivity to NH3 against toluene, dimethylformamide, acetone, ethanol, methanol, isopropanol, formaldehyde, hydrogen, carbon dioxide, acetylene, and VOCs in paint thinners at room temperature. The Sn-TiO2@rGO/CNT nanocomposite gas sensor with molar ratio of Sn/Ti = 1:10 showed the highest response to NH3 over other molar ratios of Sn/Ti as well as pure rGO/CNT and Sn-TiO2 gas sensors. The ammonia-sensing mechanisms of the Sn-TiO2@rGO/CNT gas sensor were proposed based on the formation of p-n heterojunctions of p-type rGO/CNT and n-type Sn-TiO2 nanoparticles via a low-temperature oxidizing reaction process.

9.
Biomed Mater ; 14(2): 025013, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30690438

RESUMO

In the present study, composite scaffolds of chitosan-graft-poly(methyl methacrylate) (Chi-g-PMMA) and mineral ions-loaded hydroxyapatite (mHA) (obtained by the hydrothermal treatment of hydroxyapatite (HA) in a simulated body fluid (SBF) solution (mHA@Chi-g-PMMA)) were prepared by the blending method. The physical properties, bioactivity, biological properties and their capabilities for sustained drug and protein release were studied. Physicochemical analysis showed a successful incorporation of the mineral ions in the HA particles and a good distribution of the mHA within the Chi-g-PMMA polymer matrix. The compressive strength and the Young's modulus were 15.760 ± 0.718 and 658.452 ± 17.020 MPa, respectively. In bioactivity studies, more apatite formation on the surface were seen after immersion in the SBF solution. In vitro growth experiments using UMR-106 osteoblast-like cells on the mHA@Chi-g-PMMA scaffold case showed that the attachment, viability and proliferation of the cells on the scaffolds had improved after 7 d of immersion. The in vitro release of two compounds (the cancer drug, doxorubicin (DOX)) and bovine serum albumin (BSA)), which had been attached to separate mHA@Chi-g-PMMA scaffolds, were studied to determine their suitability as drug delivery vehicles. It was found that the sustained release of DOX was 73.95% and of BSA was 57.27% after 25 h of incubation. These experimental results demonstrated that the mHA@Chi-g-PMMA composite can be utilized as a scaffold for bone cells ingrowth and also be used for drug delivery during the bone repairing.


Assuntos
Osso e Ossos/fisiologia , Quitosana/química , Hidroxiapatitas/química , Polimetil Metacrilato/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Proliferação de Células , Sobrevivência Celular , Força Compressiva , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Durapatita/química , Humanos , Íons/química , Microscopia Eletrônica de Varredura , Osteoblastos/metabolismo , Polímeros/química , Porosidade , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Mater Sci Eng C Mater Biol Appl ; 97: 23-30, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678907

RESUMO

In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan­g­N­isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg-1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ±â€¯2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ±â€¯1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ±â€¯2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 µg/mL, after which the toxicity of DOX in both forms were the same.


Assuntos
Quitosana/química , Preparações de Ação Retardada/química , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Acrilamidas/química , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Campos Magnéticos , Magnetismo , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
11.
Nanoscale Res Lett ; 12(1): 170, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28274089

RESUMO

The effects of using different counter electrode metal sulfides on the performances of solar cells made with CdS/CdSe/ZnS quantum dots co-sensitized onto hierarchical TiO2 spheres (HTSs) used as photo-electrode are reported. The HTS in the QDSSCs is composed of an assembly of numerous TiO2 spheres made by the solvolthermal method. The photoelectrical performance of HTS/CdS/CdSe/ZnS coupled to CuS or to Cu2ZnSn(S1 - x Se x )4 with x = 0, 0.5, or 1.0 counter electrodes (CEs) were compared to those coupled to Pt CE. The HTS/CdS/CdSe/ZnS coupled to the CuS CE showed the highest power conversion efficiency η (of 3.46%). The efficiencies η of 1.88, 2.64, and 2.06% were obtained for CZTS (x = 0), CZTS0.5Se0.5 (x = 0.5), and CZTSe (x = 1), respectively. These are significantly higher than those using a standard Pt CE (η = 0.37%). These higher efficiencies are the results of the higher electrocatalytic activities when the metal sulfide CEs are used.

12.
Mater Sci Eng C Mater Biol Appl ; 74: 47-54, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254319

RESUMO

Composite materials having mechanical and biological properties similar to those of human bones are needed for bone regeneration and repair. In the present study, composites were made by incorporating bioactive glass (BG) into polycaprolactone (PCL)-polyvinyl alcohol (PVA) (PCLPVA) matrix. Composites with different BG contents of 10, 25 and 50wt% were fabricated by an in-situ blending method. Physicochemical properties measurements found that the composite with 50wt% BG in the PCLPVA organic matrix exhibited the best mechanical properties (compressive strength and compressive young's modulus up to 32.26MPa and 530.91MPa, respectively). We investigated the effects of the BG content on cell adhesion, proliferation and osteogenic activity of UMR-106 cells grown on the scaffolds using in vitro cell culture assay. The composite scaffolds having 25wt% BG showed a significant increase in their cell adhesion capability and a faster cell proliferation. They also exhibited cell adhesion and spreading morphology after only 5days of culturing. For these reasons, we chose to attach the bone morphogenetic protein (BMP)-2 to this composite. The resulting composite (labeled BMP-2-loaded PCLPVABG25) showed significant improvement in the UMR-106 cells adhesion, in the enhancement in osteogenic differentiation and osteoinductivity of this composite.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Cerâmica/química , Poliésteres/química , Álcool de Polivinil/química , Animais , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Módulo de Elasticidade , Humanos , Microscopia Eletrônica de Varredura , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Biomed Mater Res B Appl Biomater ; 105(7): 1758-1766, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27184456

RESUMO

In the present study, scaffolds for bone tissue engineering applications were made by immersing the inorganic phases of three different calcium phosphate (CaPs) (hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium phosphate (BCP)) mixing bioactive glass (15Ca:80Si:5P) (BG) with polycaprolactone (PCL) as a binder in an organic phase of chitosan/collagen (ChiCol) matrix (CaPBG@ChiCol). Porous scaffolds were obtained by freeze drying the combinations. The mechanical properties and in vitro growth of rat osteoblast-like UMR-106 cells were investigated. The investigation indicated that the compressive strength was controlled by the types of CaP. The highest compressive modulus of the composites was 479.77 MPa (23.84 MPa for compressive strength) which is for the BCPBG@ChiCol composite. Compressive modulus of 459.01 and 435.95 MPa with compressive strength of 22.73 and 17.89 MPa were observed for the HABG@ChiCol and TCPBG@ChiCol composites, respectively. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the CaPBG@ChiCol surface. Comparing the scaffolds, cells grown on the BCPBG based composite showed the higher cell density. To test its bioactivity, BCPBG@ChiCol was chosen for MTT and ALP assays on UMR-106 cells. The results indicated that the UMR-106 cells were viable and had higher ALP activity as the culturing times were increased. Therefore, ChiCol-fabricated BCPBG scaffold shows promise for bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1758-1766, 2017.


Assuntos
Osso e Ossos/metabolismo , Quitosana , Colágeno , Durapatita , Vidro/química , Teste de Materiais , Osteoblastos/metabolismo , Alicerces Teciduais/química , Animais , Osso e Ossos/citologia , Linhagem Celular , Quitosana/química , Quitosana/farmacologia , Colágeno/química , Colágeno/farmacologia , Durapatita/química , Durapatita/farmacologia , Osteoblastos/citologia , Poliésteres/química , Poliésteres/farmacologia , Porosidade , Ratos
14.
Mater Sci Eng C Mater Biol Appl ; 62: 183-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952413

RESUMO

The present paper studies the physico-chemical, bioactivity and biological properties of hydroxyapatite (HA) which is derived from fish scale (FS) (FSHA) and compares them with those of synthesized HA (sHA) obtained by co-precipitation from chemical solution as a standard. The analysis shows that the FSHA is composed of flat-plate nanocrystal with a narrow width size of about 15-20 nm and having a range of 100 nm in length and that the calcium phosphate ratio (Ca/P) is 2.01 (Ca-rich CaP). Whereas, synthesized HA consists of sub-micron HA particle having a Ca/P ratio of 1.65. Bioactivity test shows that the FSHA forms more new apatite than does the sHA after being incubated in simulated body fluid (SBF) for 7 days. Moreover, the biocompatibility study shows a higher osteoblast like cell adhesion on the FSHA surface than on the sHA substrate after 3 days of culturing. Our results also show the shape of the osteoblast cells on the FSHA changes from being a rounded shape to being a flattened shape reflecting its spreading behavior on this surface. MTT assay and ALP analysis show significant increases in the proliferation and activity of osteoblasts over the FSHA scaffold after 5 days of culturing as compared to those covering the sHA substrates. These results confirm that the bio-materials derived from fish scale (FSHA) are biologically better than the chemically synthesized HA and have the potential for use as a bone scaffold or as regenerative materials.


Assuntos
Durapatita/química , Peixes/metabolismo , Nadadeiras de Animais/química , Nadadeiras de Animais/metabolismo , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Durapatita/síntese química , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Ratos , Medicina Regenerativa , Engenharia Tecidual , Difração de Raios X
15.
Mater Sci Eng C Mater Biol Appl ; 59: 235-240, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652369

RESUMO

We have synthesized Mn1-xZnxFe2O4 ((Mn, Zn) ferrite) magnetic nanoparticles (MNPs) having radius of 25nm to act as platforms for delivering drugs. The Mn0.9Zn0.1Fe2O4 MNPs exhibit superparamagnetic behavior with large saturation magnetization (MS). They were encapsulated in polymer so that they can be developed into PLGA-coated chitosan stabilized (Mn, Zn) MNPs, i.e., DOX-PLGA@CS@Mn0.9Zn0.1Fe2O4 which can serve as an effective carrier of the anti-cancer drug doxorubicin (DOX) whose release would be controlled by the pH in the environment surrounding the cancer tumor. The structure of the as-prepared particles is of a magnetic core-encapsulated by polymer shell layer of around 50nm thick. At a pH of 4.0, the DOX release within the first 5h is fast (around 57%). It becomes slower (around 46% over the next 25h) when the pH is increased to 7.4. The DOX-PLGA@CS@Mn0.9Zn0.1Fe2O4 (for concentrations lower than 125µgmL(-1)) shows lower toxicity against HeLa cells using DOX only. When the DOX-PLGA@CS@Mn0.9Zn0.1Fe2O4 is increased to 250µgmL(-1), the DOX-PLGA@CS@Mn0.9Zn0.1Fe2O4 shows greater anti-cancer activity and has satisfactory therapeutic effect. The slow sustained release of the DOX by the drug loaded particles when they are in the physiological pH environment (7.4) of normal tissues and mild toxicity of DOX against cancer cell at low concentration point to the DOX loaded PLGA@CS@Mn0.9Zn0.1Fe2O4 being safely used for treating cancer. The higher dosage of DOX needed to kill the cancer cells will be released when the synthesized carriers are subject to the pH stimuli surrounding these cells.


Assuntos
Quitosana , Doxorrubicina , Nanopartículas/química , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Óxido Ferroso-Férrico/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico , Manganês/química , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Zinco/química
16.
Nanoscale Res Lett ; 10: 146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852435

RESUMO

The photovoltaic performance of a quantum dot (QD)-sensitized solar cell consisting of CdS/CdSe/ZnS QDs loaded onto the surface of the three-dimensional (3D) flower-like TiO2 structure grown on an array (1D) of TiO2 nanorods (FTiR) is studied. The flower-like structure on the rod-shaped titania was synthesized using a double-step hydrothermal process. The FTiR array exhibited a 3D/1D composite structure with a specific surface area of 81.87 m(2)/g. Using CuS as the counter electrode instead of Pt offers the best performance and leads to an increase in the conversion efficiency (η). The efficiency of the CdS/CdSe/ZnS QD-loaded FTiR assembling CuS counter electrode cell improved from η = 2.715% (Voc = 0.692 V, Jsc = 5.896 mA/cm(2), FF = 0.665) to η = 0.703% (Voc = 0.665 V, Jsc = 2.108 mA/cm(2), FF = 0.501) for the QD-loaded FTiR assembling Pt counter electrode cell. These studies reveal a synergistically beneficial effect on the solar-to-current conversion of these QD-sensitized solar cells when a CuS counter electrode is used instead of the usual Pt counter electrode.

17.
Mater Sci Eng C Mater Biol Appl ; 38: 63-72, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24656353

RESUMO

In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze-thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications.


Assuntos
Osso e Ossos/efeitos dos fármacos , Cerâmica/farmacologia , Quitosana/farmacologia , Colágeno/farmacologia , Fenômenos Mecânicos/efeitos dos fármacos , Álcool de Polivinil/farmacologia , Soroalbumina Bovina/metabolismo , Engenharia Tecidual/métodos , Adsorção , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Bovinos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Alicerces Teciduais/química , Difração de Raios X
18.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1423-31, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23827591

RESUMO

A drug delivery vehicle consisting of spherical calcium phosphate-collagen particles covered by flower-like (SFCaPCol) blossoms composed of nanorod building blocks and their cellular response is studied. The spherical structure was achieved by a combination of sonication and freeze-drying. The SFCaPCol blossoms have a high surface area of approximately 280 m(2) g(-1). The blossom-like formation having a high surface area allows a drug loading efficiency of 77.82%. The release profile for one drug, vancomycin (VCM), shows long term sustained release in simulated body fluid (SBF), in a phosphate buffer saline (PBS, pH 7.4) solution and in culture media over 2 weeks with a cumulative release ~53%, 75% and 50%, respectively, over the first 7 days. The biocompatibility of the VCM-loaded SFCaPCol scaffold was determined by in vitro cell adhesion and proliferation tests of rat osteoblast-like UMR-106 cells. MTT tests indicated that UMR-106 cells were viable after exposure to the VCM loaded SFCaPCol, meaning that the scaffold (the flower-like blossoms) did not impair the cell's viability. The density of cells on the substrate was seen to increase with increasing cultured time.


Assuntos
Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Osteoblastos/citologia , Vancomicina/farmacologia , Adsorção , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/ultraestrutura , Cinética , Microscopia Eletrônica de Transmissão , Nanotubos/química , Nanotubos/ultraestrutura , Osteoblastos/efeitos dos fármacos , Osteoblastos/ultraestrutura , Porosidade , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
19.
Mater Sci Eng C Mater Biol Appl ; 33(1): 251-8, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25428069

RESUMO

The aim in this research is to study the physical and biocompatible properties of hydroxyapatite (HAp) composites (HApTiR) having different amounts of titania rod (TiR) in them (10-90 wt.%). The HAp and TiR were produced using hydrothermal and co-precipitation under reflux methods, respectively. The physical properties and the in vitro biocompatibility of the composites to simulated body fluid (SBF) were investigated. They were also cultured with rat osteoblast-like UMR-106 cells. The synthesized powder showed a core-shell structure with the titania rod as the core and the apatite as the shell. The hardness of the composites of HApTiR's whisker increased from 74.8 to 92.9 MPa as the TiR content was increased from 10 to 90 wt.%. Mineralization study in SBF showed the formation of apatite crystals on the HApTiR's surface after 7 days of incubation. In vitro cell adhesion tests confirmed the osteoblast attachment and growth on the HApTiR's surface. The density of cells, spread and the production of calcium nodules on the substrate were seen to increase with increasing TiR contents except for HApTiR90 (TiR=90 wt.%) which exhibited lesser growth. MTT tests on HApTiR70 indicated that UMR-106 cells were viable and the density of cells on the substrate was seen to increase with increasing culturing time.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Titânio/química , Animais , Materiais Biocompatíveis/toxicidade , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dureza , Microscopia Eletrônica de Transmissão e Varredura , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Nanoscale Res Lett ; 6(1): 19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27502643

RESUMO

Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core-shell structure formed after the citric acid-stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug(-1) and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...