Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(6): 2299-2308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38550300

RESUMO

Two-dimensional (2D) transition-metal dichalcogenides have shown great potential for energy storage applications owing to their interlayer spacing, large surface area-to-volume ratio, superior electrical properties, and chemical compatibility. Further, increasing the surface area of such materials can lead to enhanced electrical, chemical, and optical response for energy storage and generation applications. Vertical silicon nanowires (SiNWs), also known as black-Si, are an ideal substrate for 2D material growth to produce high surface-area heterostructures, owing to their ultrahigh aspect ratio. Achieving this using an industrially scalable method paves the way for next-generation energy storage devices, enabling them to enter commercialization. This work demonstrates large surface area, commercially scalable, hybrid MoS2/SiNW heterostructures, as confirmed by Raman spectroscopy, with high tunability of the MoS2 layers down to the monolayer scale and conformal MoS2 growth, parallel to the silicon nanowires, as verified by transmission electron microscopy (TEM). This has been achieved using a two-step atomic layer deposition (ALD) process, allowing MoS2 to be grown directly onto the silicon nanowires without any damage to the substrate. The ALD cycle number accurately defines the layer number from monolayer to bulk. Introducing an ALD alumina (Al2O3) interface at the MoS2/SiNW boundary results in enhanced MoS2 quality and uniformity, demonstrated by an order of magnitude reduction in the B/A exciton photoluminescence (PL) intensity ratio to 0.3 and a reduction of the corresponding layer number. This high-quality layered growth on alumina can be utilized in applications such as for interfacial layers in high-capacity batteries or for photocathodes for water splitting. The alumina-free 100 ALD cycle heterostructures demonstrated no diminishing quality effects, lending themselves well to applications that require direct electrical contact with silicon and benefit from more layers, such as electrodes for high-capacity ion batteries.

2.
ChemSusChem ; 15(4): e202102137, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34935302

RESUMO

Electrochemical synthesis of hydrogen peroxide (H2 O2 ), via the two-electron water oxidation reaction (2e- WOR), is an attractive method for the sustainable production of valuable chemicals in place of oxygen during water electrolysis. While the majority of 2e- WOR studies have focussed on electrocatalyst design, little research has been carried out on the selection of the supporting electrolyte. In this work, we investigate the impact of potassium carbonate (K2 CO3 ) electrolytes, and their key properties, on H2 O2 production. We found that at electrolyte pH values (>9.5) where the carbonate anion (CO3 2- ) was prevalent in the mixture, a 26.5 % increase in the Faraday efficiency (%FE) for H2 O2 production was achieved, compared to bicarbonate (HCO3 - ) dominant solutions. Utilising boron-doped diamond (BDD) in highly concentrated K2 CO3 solutions, current densities of up to 511 mA cm-2 (in 4 m) and %FEs of 91.5 % (in 5 m) could be attained. The results presented in this work highlight the influence of CO3 2- on electrochemical H2 O2 generation via the 2e- WOR and provide novel pathways to produce desirable commodities at the anode during electrochemical water splitting.

3.
Faraday Discuss ; 230(0): 375-387, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34259693

RESUMO

The electrochemical reduction of CO2 continues to see significant interest as a viable means of both producing important chemical materials and lowering carbon emissions. The primary challenge to making this process economically viable is the design of catalyst, electrode and reactor components that can selectively produce just one of the many possible CO2 reduction products. In this work, we report the use of hydrophobic 1-octadecanethiol coatings at copper coated gas diffusion electrodes to enhance the production of ethylene. This thiol coating gives a substantial increase in the production of ethylene at low current densities as well as a change in the rate determining step, as indicated by the substantial reduction in the Tafel slope. The observed changes to the CO2 reduction reaction indicate that the thiol layer provides a triphasic interface within the gas diffusion electrode catalyst layer.

4.
ACS Omega ; 5(21): 12355-12363, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548419

RESUMO

A strategy for the efficient recovery of highly pure copper and antimony metals from electronic waste (e-waste) was implemented by the combination of hydrometallurgical and electrochemical processes. The focus is on copper recovery as the main component in the leached solution, whereas the antimony recovery process was established as a purification step in order to achieve a highly pure copper deposit. The strategy includes mechanical methods to reduce the size of the wasted printed circuit boards to enhance the efficiency of antimony and copper lixiviation via ferric chloride in acidic media (0.5 M HCl) followed by an electrowinning process. In order to establish the best parameters for copper electrowinning, the leached solution was characterized by cyclic voltammetry and cathodic polarization. Then, an electrochemical reactor with a rotating cylinder electrode was used to evaluate the copper concentration decay, the cathodic current efficiency, the specific energy consumption, and mass-transfer coefficient. Furthermore, antimony was recovered via precipitation by a pH modification in accordance with the Pourbaix diagram. Under this methodology, two valuable products from the e-waste were recovered: a 96 wt % pure copper deposit and 81 wt % pure antimony precipitate. The strategy for recovery of other metal ions, such as lead, present in the e-waste at high concentrations will be reported in further works.

5.
Chemosphere ; 248: 125993, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32004889

RESUMO

CO2 reduction offers an attractive alternative green synthetic route for ethylene, especially where CO2 could be sourced from industrial exhausts and in combination with green power sources. However, practical applications are currently limited due to the unfortunately low selectivity of cathode materials towards ethylene. This work uses polymers with intrinsic microporosity (PIMs) to improve the performance of copper gas diffusion electrodes for CO2 reduction to ethylene. We report an improved selectivity and activity towards ethylene with the addition of a thin PIMs layer, which is seen as improved Faradaic efficiency, increased stability and a shift in the reduction to lower overpotential. This improvement is highly dependent on the thickness of the added polymer layer, with too thick a layer having a detrimental impact on the hydrophobicity of the gas diffusion layer. With a compromise in loading, PIMs can be used to enhance the activity and selectivity of catalysts for targeted CO2 reduction to ethylene.


Assuntos
Dióxido de Carbono/química , Etilenos/química , Polímeros/química , Catálise , Cobre , Difusão , Eletrodos , Interações Hidrofóbicas e Hidrofílicas , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...