Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37878996

RESUMO

Ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-co-TrFE)] thin films have been deposited by spin-coating onto the Bi0.5Na0.5TiO3(BNT)/LNO/SiO2/Si heterostructure. The copolymer microstructure investigated by using grazing-incidence wide-angle X-ray diffraction (GIWAXD) and deduced from the (200)/(110) reflections demonstrates that the b-axis in the P(VDF-co-TrFE) orthorhombic unit cell is either in the plane or out of the plane, depending on the face-on or on the two types of edge-on (called I and II) lamellar structures locally identified by atomic force microscopy (AFM). For edge-on I lamellae regions, the electroactivity (dzzeff ∼ -50.3 pm/V) is found to be twice as high as that measured for both edge-on II or face-on crystalline domains, as probed by piezoresponse force microscopy (PFM). This result is directly correlated to the direction of the ferroelectric polarization vector in the P(VDF-co-TrFE) orthorhombic cell: larger nanoscale piezoactivity is related to the b-axis which lies along the normal to the substrate plane in the case of the edge-on I domains. Here, the ability to thoroughly gain access to the as-grown polar axis direction within the edge-on crystal lamellae of the ferroelectric organic layers is evidenced by combining the nanometric resolution of the PFM technique with a statistical approach based on its spectroscopic tool. By the gathering of information at the nanoscale, two orientations for the polar b-axis are identified in edge-on lamellar structures. These findings contribute to a better understanding of the structure-property relationships in P(VDF-co-TrFE) films, which is a key issue for the design of future advanced organic electronic devices.

2.
ACS Appl Mater Interfaces ; 7(44): 24409-18, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26477357

RESUMO

(001)-Epitaxial La2WO6 (LWO) thin films are grown by pulsed laser deposition on (001)-oriented SrTiO3 (STO) substrates. The α-phase (high-temperature phase in bulk) is successfully stabilized with an orthorhombic structure (a = 16.585(1) Å, b = 5.717(2) Å, c = 8.865(5) Å). X-ray-diffraction pole-figure measurements suggest that crystallographic relationships between the film and substrate are [100]LWO ∥ [110]STO, [010]LWO ∥ [11̅0]STO and [001]LWO ∥ [001]STO. From optical properties, investigated by spectroscopic ellipsometry, we extract a refractive-index value around 2 (at 500 nm) along with the presence of two absorption bands situated, respectively at 3.07 and 6.32 eV. Ferroelectricity is evidenced as well on macroscale (standard polarization measurements) as on nanoscale, calling for experiments based on piezo-response force-microscopy, and confirmed with in situ scanning-and-tunneling measurements performed with a transmission electron microscope. This work highlights the ferroelectric behavior, at room temperature, in high-temperature LWO phase when stabilized in thin film and opens the way to new functional oxide thin films dedicated to advanced electronic devices.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23661122

RESUMO

A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...