Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1301, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346945

RESUMO

The degradation of mechanical properties caused by grain coarsening or the formation of brittle phases during welding reduces the longevity of products. Here, we report advances in the weld quality of ultra-high strength steels by utilizing Nb and Cr instead of Ni. Sole addition of Cr, as an alternative to Ni, has limitations in developing fine weld microstructure, while it is revealed that the coupling effects of Nb and Cr additions make a finer interlocking weld microstructures with a higher fraction of retained austenite due to the decrease in austenite to acicular ferrite and bainite transformation temperature and carbon activity. As a result, an alloying design with Nb and Cr creates ultrastrong and ductile steel welds with enhanced tensile properties, impact toughness, and fatigue strength, at 45% lower material costs and lower environmental impact by removing Ni.

2.
Nat Commun ; 15(1): 561, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228660

RESUMO

Aluminum alloys play an important role in circular metallurgy due to their good recyclability and 95% energy gain when made from scrap. Their low density and high strength translate linearly to lower greenhouse gas emissions in transportation, and their excellent corrosion resistance enhances product longevity. The durability of Al alloys stems from the dense barrier oxide film strongly bonded to the surface, preventing further degradation. However, despite decades of research, the individual elemental reactions and their influence on the nanoscale characteristics of the oxide film during corrosion in multicomponent Al alloys remain unresolved questions. Here, we build up a direct correlation between the near-atomistic picture of the corrosion oxide film and the solute reactivity in the aqueous corrosion of a high-strength Al-Zn-Mg-Cu alloy. We reveal the formation of nanocrystalline Al oxide and highlight the solute partitioning between the oxide and the matrix and segregation to the internal interface. The sharp decrease in partitioning content of Mg in the peak-aged alloy emphasizes the impact of heat treatment on the oxide stability and corrosion kinetics. Through H isotopic labelling with deuterium, we provide direct evidence that the oxide acts as a trap for this element, pointing at the essential role of the Al oxide might act as a kinetic barrier in preventing H embrittlement. Our findings advance the mechanistic understanding of further improving the stability of Al oxide, guiding the design of corrosion-resistant alloys for potential applications.

3.
Adv Sci (Weinh) ; 10(16): e2300111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36995040

RESUMO

Iron making is the biggest single cause of global warming. The reduction of iron ores with carbon generates about 7% of the global carbon dioxide emissions to produce ≈1.85 billion tons of steel per year. This dramatic scenario fuels efforts to re-invent this sector by using renewable and carbon-free reductants and electricity. Here, the authors show how to make sustainable steel by reducing solid iron oxides with hydrogen released from ammonia. Ammonia is an annually 180 million ton traded chemical energy carrier, with established transcontinental logistics and low liquefaction costs. It can be synthesized with green hydrogen and release hydrogen again through the reduction reaction. This advantage connects it with green iron making, for replacing fossil reductants. the authors show that ammonia-based reduction of iron oxide proceeds through an autocatalytic reaction, is kinetically as effective as hydrogen-based direct reduction, yields the same metallization, and can be industrially realized with existing technologies. The produced iron/iron nitride mixture can be subsequently melted in an electric arc furnace (or co-charged into a converter) to adjust the chemical composition to the target steel grades. A novel approach is thus presented to deploying intermittent renewable energy, mediated by green ammonia, for a disruptive technology transition toward sustainable iron making.

4.
Science ; 378(6615): 78-85, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201584

RESUMO

High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10-6 per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.

5.
Nat Commun ; 13(1): 4361, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896545

RESUMO

In conventional processing, metals go through multiple manufacturing steps including casting, plastic deformation, and heat treatment to achieve the desired property. In additive manufacturing (AM) the same target must be reached in one fabrication process, involving solidification and cyclic remelting. The thermodynamic and kinetic differences between the solid and liquid phases lead to constitutional undercooling, local variations in the solidification interval, and unexpected precipitation of secondary phases. These features may cause many undesired defects, one of which is the so-called hot cracking. The response of the thermodynamic and kinetic nature of these phenomena to high cooling rates provides access to the knowledge-based and tailored design of alloys for AM. Here, we illustrate such an approach by solving the hot cracking problem, using the commercially important IN738LC superalloy as a model material. The same approach could also be applied to adapt other hot-cracking susceptible alloy systems for AM.

6.
Nat Commun ; 13(1): 3598, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739123

RESUMO

Deformation twinning is rarely found in bulk face-centered cubic (FCC) alloys with very high stacking fault energy (SFE) under standard loading conditions. Here, based on results from bulk quasi-static tensile experiments, we report deformation twinning in a micrometer grain-sized compositionally complex steel (CCS) with a very high SFE of ~79 mJ/m2, far above the SFE regime for twinning (<~50 mJ/m2) reported for FCC steels. The dual-nanoprecipitation, enabled by the compositional degrees of freedom, contributes to an ultrahigh true tensile stress up to 1.9 GPa in our CCS. The strengthening effect enhances the flow stress to reach the high critical value for the onset of mechanical twinning. The formation of nanotwins in turn enables further strain hardening and toughening mechanisms that enhance the mechanical performance. The high stress twinning effect introduces a so far untapped strengthening and toughening mechanism, for enabling the design of high SFEs alloys with improved mechanical properties.

7.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210359

RESUMO

Deformation-induced martensitic transformation (DIMT) has been used for designing high-performance alloys to prevent structural failure under static loads. Its effectiveness against fatigue, however, is unclear. This limits the application of DIMT for parts that are exposed to variable loads, although such scenarios are the rule and not the exception for structural failure. Here we reveal the dual role of DIMT in fatigue crack growth through in situ observations. Two antagonistic fatigue mechanisms mediated by DIMT are identified, namely, transformation-mediated crack arresting, which prevents crack growth, and transformation-mediated crack coalescence, which promotes crack growth. Both mechanisms are due to the hardness and brittleness of martensite as a transformation product, rather than to the actual transformation process itself. In fatigue crack growth, the prevalence of one mechanism over the other critically depends on the crack size and the mechanical stability of the parent austenite phase. Elucidating the two mechanisms and their interplay allows for the microstructure design and safe use of metastable alloys that experience fatigue loads. The findings also generally reveal how metastable alloy microstructures must be designed for materials to be fatigue-resistant.

8.
Nature ; 602(7897): 437-441, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173345

RESUMO

Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles1. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation2,3. Hydrogen 'embrittlement' is often indicated as the main culprit4; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design.

9.
Adv Mater ; 33(37): e2102139, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337799

RESUMO

The lack of strength and damage tolerance can limit the applications of conventional soft magnetic materials (SMMs), particularly in mechanically loaded functional devices. Therefore, strengthening and toughening of SMMs is critically important. However, conventional strengthening concepts usually significantly deteriorate soft magnetic properties, due to Bloch wall interactions with the defects used for hardening. Here a novel concept to overcome this dilemma is proposed, by developing bulk SMMs with excellent mechanical and attractive soft magnetic properties through coherent and ordered nanoprecipitates (<15 nm) dispersed homogeneously within a face-centered cubic matrix of a non-equiatomic CoFeNiTaAl high-entropy alloy (HEA). Compared to the alloy in precipitate-free state, the alloy variant with a large volume fraction (>42%) of nanoprecipitates achieves significantly enhanced strength (≈1526 MPa) at good ductility (≈15%), while the coercivity is only marginally increased (<10.7 Oe). The ordered nanoprecipitates and the resulting dynamic microband refinement in the matrix significantly strengthen the HEAs, while full coherency between the nanoprecipitates and the matrix leads at the same time to the desired insignificant pinning of the magnetic domain walls. The findings provide guidance for developing new high-performance materials with an excellent combination of mechanical and soft magnetic properties as needed for the electrification of transport and industry.

10.
Nat Mater ; 20(12): 1629-1634, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34239084

RESUMO

The antagonism between strength and resistance to hydrogen embrittlement in metallic materials is an intrinsic obstacle to the design of lightweight yet reliable structural components operated in hydrogen-containing environments. Economical and scalable microstructural solutions to this challenge must be found. Here, we introduce a counterintuitive strategy to exploit the typically undesired chemical heterogeneity within the material's microstructure that enables local enhancement of crack resistance and local hydrogen trapping. We use this approach in a manganese-containing high-strength steel and produce a high dispersion of manganese-rich zones within the microstructure. These solute-rich buffer regions allow for local micro-tuning of the phase stability, arresting hydrogen-induced microcracks and thus interrupting the percolation of hydrogen-assisted damage. This results in a superior hydrogen embrittlement resistance (better by a factor of two) without sacrificing the material's strength and ductility. The strategy of exploiting chemical heterogeneities, rather than avoiding them, broadens the horizon for microstructure engineering via advanced thermomechanical processing.


Assuntos
Hidrogênio , Aço , Aço/química , Resistência à Tração
11.
Sci Adv ; 6(46)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33188015

RESUMO

High-performance lightweight materials are urgently needed, given the pressing quest for weight reduction and the associated energy savings and emission reduction. Here, by incorporating the multi-principal element feature of compositionally complex alloys, we develop the concept of lightweight steels further and propose a new class of compositionally complex steels (CCSs). This approach allows us to use the high solid solution strengthening and shift the alloys' compositions into previously unattainable phase regions where both nanosized shearable κ-carbides and non-shearable B2 particles are simultaneously formed. The achievement of dual-nanoprecipitation in our CCSs leads to materials with ultrahigh specific tensile strength (up to 260 MPa·cm3 g-1) and excellent tensile elongation (13 to 38%), a combination outperforming all other high-strength high-entropy alloys and advanced lightweight steels. Our concept of CCSs is thus useful for guiding the design of ultrastrong lightweight metallic materials.

12.
Sci Adv ; 6(13): eaay1430, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258395

RESUMO

For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.2 weight %, this approach yields ultimate strength levels beyond 2.0 GPa in combination with good ductility (>20%). Although demonstrated here for plain carbon steels, the CBE design approach is, in principle, applicable also to other alloys.

13.
Phys Rev Lett ; 124(10): 106102, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216435

RESUMO

The boundary between two crystal grains can decompose into arrays of facets with distinct crystallographic character. Faceting occurs to minimize the system's free energy, i.e., when the total interfacial energy of all facets is below that of the topologically shortest interface plane. In a model Al-Zn-Mg-Cu alloy, we show that faceting occurs at investigated grain boundaries and that the local chemistry is strongly correlated with the facet character. The self-consistent coevolution of facet structure and chemistry leads to the formation of periodic segregation patterns of 5-10 nm, or to preferential precipitation. This study shows that segregation-faceting interplay is not limited to bicrystals but exists in bulk engineering Al alloys and hence affects their performance.

14.
Nat Commun ; 10(1): 942, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808943

RESUMO

Hydrogen pick-up leading to hydride formation is often observed in commercially pure Ti (CP-Ti) and Ti-based alloys prepared for microscopic observation by conventional methods, such as electro-polishing and room temperature focused ion beam (FIB) milling. Here, we demonstrate that cryogenic FIB milling can effectively prevent undesired hydrogen pick-up. Specimens of CP-Ti and a Ti dual-phase alloy (Ti-6Al-2Sn-4Zr-6Mo, Ti6246, in wt.%) were prepared using a xenon-plasma FIB microscope equipped with a cryogenic stage reaching -135 °C. Transmission electron microscopy (TEM), selected area electron diffraction, and scanning TEM indicated no hydride formation in cryo-milled CP-Ti lamellae. Atom probe tomography further demonstrated that cryo-FIB significantly reduces hydrogen levels within the Ti6246 matrix compared with conventional methods. Supported by molecular dynamics simulations, we show that significantly lowering the thermal activation for H diffusion inhibits undesired environmental hydrogen pick-up during preparation and prevents pre-charged hydrogen from diffusing out of the sample, allowing for hydrogen embrittlement mechanisms of Ti-based alloys to be investigated at the nanoscale.

15.
Microsc Microanal ; 25(2): 389-400, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30722805

RESUMO

We introduce an efficient, automated computational approach for analyzing interfaces within atom probe tomography datasets, enabling quantitative mapping of their thickness, composition, as well as the Gibbsian interfacial excess of each solute. Detailed evaluation of an experimental dataset indicates that compared with the composition map, the interfacial excess map is more robust and exhibits a relatively higher resolution to reveal compositional variations. By field evaporation simulations with a predefined emitter mimicking the experimental dataset, the impact of trajectory aberrations on the measurement of the thickness, composition, and interfacial excess of the decorated interface are systematically analyzed and discussed.

16.
Adv Mater ; 31(8): e1807142, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30592339

RESUMO

Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium- and high-entropy alloys investigated so far do not substantially exceed those of conventional alloys owing to the insufficient utilization of lattice distortion. Here it is shown that a simple VCoNi equiatomic medium-entropy alloy exhibits a near 1 GPa yield strength and good ductility, outperforming conventional solid-solution alloys. It is demonstrated that a wide fluctuation of the atomic bond distances in such alloys, i.e., severe lattice distortion, improves both yield stress and its sensitivity to grain size. In addition, the dislocation-mediated plasticity effectively enhances the strength-ductility relationship by generating nanosized dislocation substructures due to massive pinning. The results demonstrate that severe lattice distortion is a key property for identifying extra-strong materials for structural engineering applications.

17.
Nat Commun ; 9(1): 197, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321469

RESUMO

The original PDF version of this Article omitted to state that "Jeongho Han and Seok-Hyeon Kang contributed equally to this work" in the affiliations section. This has now been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.

18.
Nat Commun ; 8(1): 751, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963494

RESUMO

Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

19.
Nature ; 544(7651): 460-464, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28397822

RESUMO

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands. Their outstanding strength originates from semi-coherent precipitates, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.


Assuntos
Precipitação Química , Nanopartículas/química , Nanotecnologia , Aço/química , Alumínio/química , Cobalto/química , Ligas Dentárias/química , Elasticidade , Teste de Materiais , Microscopia Eletrônica de Transmissão e Varredura , Nanopartículas/ultraestrutura , Aço/economia , Síncrotrons , Resistência à Tração , Titânio/química , Tomografia
20.
Science ; 355(6329): 1055-1057, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28280201

RESUMO

Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...