Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(12): e2211363, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626679

RESUMO

Fast and accurate detection of microbial cells in clinical samples is highly valuable but remains a challenge. Here, a simple, culture-free diagnostic system is developed for direct detection of pathogenic bacteria in water, urine, and serum samples using an optical colorimetric biosensor. It consists of printed nanoarrays chemically conjugated with specific antibodies that exhibits distinct color changes after capturing target pathogens. By utilizing the internal capillarity inside an evaporating droplet, target preconcentration is achieved within a few minutes to enable rapid identification and more efficient detection of bacterial pathogens. More importantly, the scattering signals of bacteria are significantly amplified by the nanoarrays due to strong near-field localization, which supports a visualizable analysis of the growth, reproduction, and cell activity of bacteria at the single-cell level. Finally, in addition to high selectivity, this nanoarray-based biosensor is also capable of accurate quantification and continuous monitoring of bacterial load on food over a broad linear range, with a detection limit of 10 CFU mL-1 . This work provides an accessible and user-friendly tool for point-of-care testing of pathogens in many clinical and environmental applications, and possibly enables a breakthrough in early prevention and treatment.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Humanos , Infecções Bacterianas/diagnóstico , Bactérias
2.
Langmuir ; 39(1): 204-210, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36542552

RESUMO

The commercial application of Mie-resonant nanophotonic technologies currently used in various laboratory studies, from biosensing to quantum optics, appears to be challenging. Development of colloidal-based fabrication approaches is a solution to face the issue. In our research, we studied the fabrication of resonant Si nanoparticle (NP) arrays on a surface with controlled wettability. First, we use nanosecond (ns) laser ablation in water and subsequent density gradient separation to obtain colloids of resonant spherical crystalline silicon NPs with a low polydispersity index. Then, the same industrial ns laser is applied to create a wetting gradient on the steel substrate to initiate a self-assembly of the NPs deposited by drop casting. Thus, we use a single commercial ns laser for producing both the NPs and the hydrophilic wetting gradient. We apply an easily operating size separation technique and only non-toxic media. This research contributes to the large-scale fabrication of various optical devices based on resonant high-refractive index nanostructures by ecologically friendly self-assembly techniques.

3.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630977

RESUMO

It is very natural to use silicon as a primary material for microelectronics. However, silicon application in nanophotonics is limited due to the indirect gap of its energy band structure. To improve the silicon emission properties, it can be combined with a plasmonic part. The resulting metal-dielectric (hybrid) nanostructures have shown their excellence compared to simple metallic dielectric nanostructures. Still, in many cases, the fabrication of such structures is time consuming and quite difficult. Here, for the first time, we demonstrate a single-step and lithography-free laser-induced dewetting of bi-layer nanoscale-thickness gold-silicon films supported by a glass substrate to produce hybrid nanoparticles. For obtaining hybrid nanoparticles, we study nonlinear photoluminescence by mapping their optical response and morphology by scanning electron microscopy. This method can be used for the fabrication of arrays of hybrid nanoparticles providing white-light photoluminescence with a good control of their microscopic sizes and position. The developed approach can be useful for a wide range of photonic applications including the all-optical data processing and storage where miniaturization down to micro- and nanoscale together with an efficiency increase is of high demand.

4.
Angew Chem Int Ed Engl ; 60(45): 24234-24240, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494351

RESUMO

Fast and ultrasensitive detection of pathogens is very important for efficient monitoring and prevention of viral infections. Here, we demonstrate a label-free optical detection approach that uses a printed nanochain assay for colorimetric quantitative testing of viruses. The antibody-modified nanochains have high activity and specificity which can rapidly identify target viruses directly from biofluids in 15 min, as well as differentiate their subtypes. Arising from the resonance induced near-field enhancement, the color of nanochains changes with the binding of viruses that are easily observed by a smartphone. We achieve the detection limit of 1 PFU µL-1 through optimizing the optical response of nanochains in visible region. Besides, it allows for real-time response to virus concentrations ranging from 0 to 1.0×105  PFU mL-1 . This low-cost and portable platform is also applicable to rapid detection of other biomarkers, making it attractive for many clinical applications.


Assuntos
Colorimetria , Vírus/isolamento & purificação , Biomarcadores/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...