Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6097, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731832

RESUMO

Natural rubber (NR) foam can be prepared by the Dunlop method using concentrated natural latex with chemical agents. Most previous studies have focused on the thermodynamic parameters of solid rubber in extension. The main objective of this study is to investigate the effect of the NR matrix concentration on the static and dynamic properties of NR foams, especially the new approach of considering the thermodynamic aspects of NR foam in compression. We found that the density and compression strength of NR foams increased with increasing NR matrix concentration. The mechanical properties of NR foam were in agreement with computational modelling. Moreover, thermodynamic aspects showed that the ratio of internal energy force to the compression force, Fu/F, and the entropy, S, increased with increasing matrix concentration. The activation enthalpy, ∆Ha, also increased with increasing matrix concentration in the NR foam, indicating the greater relaxation time of the backbone of the rubber molecules. New scientific concepts of thermodynamic parameters of the crosslinked NR foam in compression mode are proposed and discussed. Our results will improve both the knowledge and the development of rubber foams based on the structure-properties relationship, especially the new scientific concept of the thermodynamical parameters under compression.

2.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899121

RESUMO

Calcium carbonate (CaCO3) is one of the most important inorganic powders and is widely used as filler in order to reduce costs in the rubber industry. Nanocalcium carbonate reduces costs and acts as a semireinforcing filler that improves the mechanical properties of rubber composites. The objective of this study was to investigate the effect of nano-CaCO3 (NCC) and micro-CaCO3 (MCC) on the properties of natural rubber composites, in particular, new results of structure-properties relationship. The effects of NCC/MCC on the properties of rubber composites, such as Mooney viscosity, bound rubber, Mullins effect, and Payne effect, were investigated. The result of the Mullins effect of rubber composites filled with NCC was in good agreement with the results of Mooney viscosity and bound rubber, with higher Mooney viscosity and bound rubber leading to higher stress to pull the rubber composites. The Payne effect showed that the value of different storage moduli (ΔG') of rubber composites filled with 25 parts per hundred rubber (phr) NCC was the lowest due to weaker filler network, while the rubber supplemented with 100 phr NCC had more significant ΔG' values with increase in strain. The results of rubber composites filled with MCC showed the same tendency as those of rubber composites filled with NCC. However, the effect of specific surface area of NCC on the properties of rubber composites was more pronounced than those of rubber composites filled with MCC. Finite element analysis of the mechanical property of rubber composites was in good agreement with the result from the experiment. The master curves of time-temperature superposition presented lower free volume in the composites for higher loading of filler, which would require more relaxation time of rubber molecules. This type of nanocalcium carbonate material can be applied to tailor the properties and processability of rubber products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...