Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(1): 17-26, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36627108

RESUMO

Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.


Assuntos
Dependovirus , Biologia Sintética , Humanos , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética
2.
Mol Cancer Ther ; 21(11): 1710-1721, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36031328

RESUMO

Immune checkpoint inhibitors (ICI) are promising in adjuvant settings for solid tumors and hematologic malignancies. They are currently used in the treatment as mAbs in high concentrations, raising concerns of toxicity and adverse side effects. Among various checkpoint molecules, targeting the programmed cell death protein-1 (PD-1)-programmed death-ligand 1 (PD-L1) axis has garnered more clinical utility than others have. To develop a physiologically relevant and systemically stable level of ICIs from a one-time application by genetic antibody engineering, we endeavored using a nonpathogenic, replication-deficient recombinant adeno-associated vector (rAAV) expressing single-chain variable fragments (scFv) of PD-L1 antibody and tested in syngeneic mouse therapy models of MC38 colorectal and EMT6 breast tumors. Results of this study indicated a significant protection against PD-L1-mediated inhibition of CD8+ T-cell function, against the growth of primary and secondary tumors, and durable antitumor CTLs activity by adoptive CD8+ T-cell transfer. Stable maintenance of PD-L1 scFv in vivo resulted in an increase in PD-1- CD8+ T cells and a concomitant decrease in regulatory T cells, M2 macrophages, and myeloid-derived suppressor cells in the tumor microenvironment. Overall, these data demonstrate the potential of rAAV-PD-L1-scFv as an alternative to mAb targeting of PD-L1 for tumor therapy.


Assuntos
Antígeno B7-H1 , Neoplasias , Camundongos , Animais , Receptor de Morte Celular Programada 1 , Imunoterapia/métodos , Neoplasias/patologia , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
3.
Front Immunol ; 12: 747780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867973

RESUMO

Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.


Assuntos
Linfócitos B Reguladores/imunologia , Carcinoma Pulmonar de Lewis/imunologia , Diferenciação Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Microambiente Tumoral/imunologia , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
4.
Cancer Res ; 81(21): 5425-5437, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289986

RESUMO

Elevated infiltration of immunosuppressive alternatively polarized (M2) macrophages is associated with poor prognosis in patients with cancer. The tumor microenvironment remarkably orchestrates molecular mechanisms that program these macrophages. Here we identify a novel role for oncogenic Hedgehog (Hh) signaling in programming signature metabolic circuitries that regulate alternative polarization of tumor-associated macrophages. Two immunocompetent orthotopic mouse models of mammary tumors were used to test the effect of inhibiting Hh signaling on tumor-associated macrophages. Treatment with the pharmacologic Hh inhibitor vismodegib induced a significant shift in the profile of tumor-infiltrating macrophages. Mass spectrometry-based metabolomic analysis showed Hh inhibition induced significant alterations in metabolic processes, including metabolic sensing, mitochondrial adaptations, and lipid metabolism. In particular, inhibition of Hh in M2 macrophages reduced flux through the UDP-GlcNAc biosynthesis pathway. Consequently, O-GlcNAc-modification of STAT6 decreased, mitigating the immune-suppressive program of M2 macrophages, and the metabolically demanding M2 macrophages shifted their metabolism and bioenergetics from fatty acid oxidation to glycolysis. M2 macrophages enriched from vismodegib-treated mammary tumors showed characteristically decreased O-GlcNAcylation and altered mitochondrial dynamics. These Hh-inhibited macrophages are reminiscent of inflammatory (M1) macrophages, phenotypically characterized by fragmented mitochondria. This is the first report highlighting the relevance of Hh signaling in controlling a complex metabolic network in immune cells. These data describe a novel immunometabolic function of Hh signaling that can be clinically exploited. SIGNIFICANCE: These findings illustrate that Hh activity regulates a metabolic and bioenergetic regulatory program in tumor-associated macrophages that promotes their immune-suppressive polarization.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas Hedgehog/metabolismo , Metaboloma , Mitocôndrias/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Metabolismo Energético , Feminino , Glicólise , Proteínas Hedgehog/genética , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA-Seq , Transcriptoma , Células Tumorais Cultivadas , Macrófagos Associados a Tumor/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Oncol ; 11: 654922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968758

RESUMO

Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.

6.
Front Med (Lausanne) ; 8: 643793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928104

RESUMO

Cellular exosome-mediated crosstalk in tumor microenvironment (TME) is a critical component of anti-tumor immune responses. In addition to particle size, exosome transport and uptake by target cells is influenced by physical and physiological factors, including interstitial fluid pressure, and exosome concentration. These variables differ under both normal and pathological conditions, including cancer. The transport of exosomes in TME is governed by interstitial flow and diffusion. Based on these determinants, mathematical models were adapted to simulate the transport of exosomes in the TME with specified exosome release rates from the tumor cells. In this study, the significance of spatial relationship in exosome-mediated intercellular communication was established by treating their movement in the TME as a continuum using a transport equation, with advection due to interstitial flow and diffusion due to concentration gradients. To quantify the rate of release of exosomes by biomechanical forces acting on the tumor cells, we used a transwell platform with confluent triple negative breast cancer cells 4T1.2 seeded in BioFlex plates exposed to an oscillatory force. Exosome release rates were quantified from 4T1.2 cells seeded at the bottom of the well following the application of either no force or an oscillatory force, and these rates were used to model exosome transport in the transwell. The simulations predicted that a larger number of exosomes reached the membrane of the transwell for 4T1.2 cells exposed to the oscillatory force when compared to controls. Additionally, we simulated the interstitial fluid flow and exosome transport in a 2-dimensional TME with macrophages, T cells, and mixtures of these two populations at two different stages of a tumor growth. Computational simulations were carried out using the commercial computational simulation package, ANSYS/Fluent. The results of this study indicated higher exosome concentrations and larger interstitial fluid pressure at the later stages of the tumor growth. Quantifying the release of exosomes by cancer cells, their transport through the TME, and their concentration in TME will afford a deeper understanding of the mechanisms of these interactions and aid in deriving predictive models for therapeutic intervention.

7.
Mol Cancer Ther ; 19(12): 2585-2597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199500

RESUMO

Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Osteoprotegerina/genética , Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Citocinas , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Osteoprotegerina/metabolismo , Ligação Proteica , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microtomografia por Raio-X
8.
FASEB J ; 34(12): 15687-15700, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047892

RESUMO

Extracellular trafficking of tumor necrosis factor receptor superfamily (TNFRSF) is tightly regulated, disruption of which triggers various autoinflammatory disorders, including TNF receptor-associated periodic syndrome (TRAPS). Here, we provide thus far unraveled molecular basis of noncysteine mutations in TNFR1 ectodomain where loss of an aromatic moiety in cysteine-rich domain (CRD) 2 results in TRAPS disease-associated phenotype. Our study characterized that a missense mutation on phenylalanine residue located in CRD2 (TNFR1F60V ) causes a delay in TNFR1 transport to cell membrane, leading to sustained receptor responsiveness and downstream NF-κB activation, characteristic of clinical manifestation of a prolonged fever. By creating and characterizing identical mutations on structurally conserved ectodomains of osteoprotegerin (OPG) and decoy receptor 3, other two secreted forms of TNFRSF, we further identified that a conserved aromatic residue at the A1 submodule of CRD2 (A1CRD2) confers structural integrity of ectodomain where aromatic sidechain deletion increases thermal instability, interfering with efficient posttranslational modification and subsequent receptor secretion. Interestingly, our functional analyses indicated that this particular noncysteine mutation is not associated with either protein misfolding or loss of function. Finally, by using a synthetic agonist, we demonstrated gain-of-function of the trafficking defect, suggesting the possibility of rescuing affected pathology in related disorders. Given the structural and topological similarities present in the ectodomains of TNFRSF members, our findings provide mechanistic insights of defects in subcellular trafficking of TNF receptors, reported in various TNFRSF-associated diseases.


Assuntos
Transporte Proteico/genética , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Proteínas de Transporte/genética , Linhagem Celular , Linhagem Celular Tumoral , Febre/genética , Células HEK293 , Células HeLa , Humanos , Mutação de Sentido Incorreto/genética , NF-kappa B/genética
9.
Lab Invest ; 100(12): 1503-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572176

RESUMO

Breast cancer (BCa) proliferates within a complex, three-dimensional microenvironment amid heterogeneous biochemical and biophysical cues. Understanding how mechanical forces within the tumor microenvironment (TME) regulate BCa phenotype is of great interest. We demonstrate that mechanical strain enhanced the proliferation and migration of both estrogen receptor+ and triple-negative (TNBC) human and mouse BCa cells. Furthermore, a critical role for exosomes derived from cells subjected to mechanical strain in these pro-tumorigenic effects was identified. Exosome production by TNBC cells increased upon exposure to oscillatory strain (OS), which correlated with elevated cell proliferation. Using a syngeneic, orthotopic mouse model of TNBC, we identified that preconditioning BCa cells with OS significantly increased tumor growth and myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the TME. This pro-tumorigenic myeloid cell enrichment also correlated with a decrease in CD8+ T cells. An increase in PD-L1+ exosome release from BCa cells following OS supported additive T cell inhibitory functions in the TME. The role of exosomes in MDSC and M2 macrophage was confirmed in vivo by cytotracking fluorescent exosomes, derived from labeled 4T1.2 cells, preconditioned with OS. In addition, in vivo internalization and intratumoral localization of tumor-cell derived exosomes was observed within MDSCs, M2 macrophages, and CD45-negative cell populations following direct injection of fluorescently-labeled exosomes. Our data demonstrate that exposure to mechanical strain promotes invasive and pro-tumorigenic phenotypes in BCa cells, indicating that mechanical strain can impact the growth and proliferation of cancer cell, alter exosome production by BCa, and induce immunosuppression in the TME by dampening anti-tumor immunity.


Assuntos
Fenômenos Biomecânicos , Neoplasias da Mama , Estresse Mecânico , Microambiente Tumoral , Animais , Fenômenos Biomecânicos/imunologia , Fenômenos Biomecânicos/fisiologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Carcinogênese , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Humanos , Tolerância Imunológica , Células MCF-7 , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
10.
Hum Gene Ther ; 31(9-10): 565-574, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220217

RESUMO

A 20-nt long sequence, termed the D-sequence, in the adeno-associated virus (AAV) inverted terminal repeat was observed to share a partial sequence homology with the X-box in the regulatory region of the human leukocyte antigen DRA (HLA-DRA) promoter of the human major histocompatibility complex class II (MHC-II) genes. The D-sequence was also shown to specifically interact with the regulatory factor binding to the X-box (RFX), binding of which to the X-box is a critical step in the MHC-II gene expression, suggesting that D-sequence might compete for RFX transcription factor binding, thereby suppressing expression from the MHC-II promoter. In DNA-mediated transfection experiments, using a reporter gene under the control of the HLA-DRA promoter, D-sequence oligonucleotides were found to inhibit expression of the reporter gene expression in HeLa and 293 cells by ∼93% and 96%, respectively. No inhibition was observed when nonspecific synthetic oligonucleotides were used. D-sequence oligonucleotides had no effect on expression from the cytomegalovirus immediate-early gene promoter. Interferon-γ-mediated activation of MHC-II gene expression was also inhibited by D-sequence oligonucleotides as well as after infection with either the wild-type AAV or transduction with recombinant AAV vectors. These studies suggest that the D-sequence-mediated downregulation of the MHC-II gene expression may be exploited toward the development of novel AAV vectors capable of dampening the host humoral response, which has important implication in the optimal use of these vectors in human gene therapy.


Assuntos
Dependovirus/genética , Antígenos de Histocompatibilidade Classe II/genética , Imunidade Humoral , Sequências Repetidas Terminais , Animais , DNA Viral , Regulação para Baixo , Regulação da Expressão Gênica , Genes MHC da Classe II , Terapia Genética , Vetores Genéticos , Células HEK293 , Antígenos HLA/genética , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fator Regulador X1/genética , Homologia de Sequência
11.
Cancer Res ; 80(8): 1615-1623, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32066566

RESUMO

Therapeutic interventions to harness the immune system against tumor cells have provided mixed results in the past for several solid tumors and hematologic malignancies. However, immunotherapy has advanced considerably over the last decade and is becoming an integral combination for treating patients with advanced solid tumors. In particular, prostate cancer immunotherapy has shown modest efficacy for patients in the past. With several key discoveries on immune mechanisms and advanced molecular diagnostic platforms recently, immunotherapy is re-emerging as a viable option for prostate cancer, especially castration-resistant prostate cancer (CRPC), to stimulate antitumor immunity. Combination of patient-tailored immunotherapy and immune checkpoint blockers with conventional cytotoxic agents and androgen receptor-targeted therapies should move the field forward. With a recent adaptation that the application of immune checkpoint inhibitors has been successful in the treatment of more than a dozen solid tumors, including melanoma, lymphoma, liver, cervical, gastrointestinal, and breast cancers, it is a timely endeavor to harness immunotherapy for prostate cancer. Here, we provide an account on the progression of immunotherapy with new discoveries and precision approaches for tumors, in particular CRPC, from mechanistic standpoint to emerging limitations and future directions.


Assuntos
Imunoterapia/métodos , Neoplasias da Próstata/terapia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Terapia Combinada/métodos , Previsões , Humanos , Imunização Passiva/métodos , Imunoterapia/tendências , Imunoterapia Ativa/métodos , Masculino , Células-Tronco Neoplásicas/imunologia , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/imunologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/terapia , Prostatite/complicações
12.
Cancer Res ; 80(5): 1036-1048, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911552

RESUMO

Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM), with frequent progression to new local and distant bone sites. Our previous studies demonstrated that multiple myeloma cells at primary sites secrete soluble factors and suppress osteoblastogenesis via the inhibition of Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB) in new bone sites, prior to the arrival of metastatic tumor cells. However, it is unknown whether OB-Runx2 suppression in new bone sites feeds back to promote multiple myeloma dissemination to and progression in these areas. Hence, we developed a syngeneic mouse model of multiple myeloma in which Runx2 is specifically deleted in the immature OBs of C57BL6/KaLwRij mice (OB-Runx2-/- mice) to study the effect of OB-Runx2 deficiency on multiple myeloma progression in new bone sites. In vivo studies with this model demonstrated that OB-Runx2 deficiency attracts multiple myeloma cells and promotes multiple myeloma tumor growth in bone. Mechanistic studies further revealed that OB-Runx2 deficiency induces an immunosuppressive microenvironment in BM that is marked by an increase in the concentration and activation of myeloid-derived suppressor cells (MDSC) and the suppression and exhaustion of cytotoxic CD8+ T cells. In contrast, MDSC depletion by either gemcitabine or 5-fluorouracil treatment in OB-Runx2-/- mice prevented these effects and inhibited multiple myeloma tumor growth in BM. These novel discoveries demonstrate that OB-Runx2 deficiency in new bone sites promotes multiple myeloma dissemination and progression by increasing metastatic cytokines and MDSCs in BM and inhibiting BM immunity. Importantly, MDSC depletion can block multiple myeloma progression promoted by OB-Runx2 deficiency.Significance: This study demonstrates that Runx2 deficiency in immature osteoblasts at distant bone sites attracts myeloma cells and allows myeloma progression in new bone sites via OB-secreted metastatic cytokines and MDSC-mediated suppression of bone marrow immunity.


Assuntos
Neoplasias Ósseas/secundário , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Mieloma Múltiplo/patologia , Osteoblastos/patologia , Microambiente Tumoral/imunologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/patologia , Neoplasias Ósseas/imunologia , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Osso e Ossos/patologia , Linhagem Celular Tumoral/transplante , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Modelos Animais de Doenças , Feminino , Fluoruracila , Humanos , Masculino , Camundongos , Camundongos Knockout , Mieloma Múltiplo/imunologia , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Osteoblastos/imunologia , Gencitabina
13.
FASEB Bioadv ; 1(3): 180-190, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31225515

RESUMO

The short half-life and use of recombinant bone morphogenetic protein (BMP)-2 in large doses poses major limitations in the clinic. Events regulating post-translational processing and degradation of BMP2 in situ, linked to its secretion, have not been understood. Towards identifying mechanisms regulating intracellular BMP2 stability, we first discovered that inhibiting proteasomal degradation enhances both intracellular BMP2 level and its extracellular secretion. Next, we identified BMP2 degradation occurs through an ubiquitin-mediated mechanism. Since ubiquitination precedes proteasomal turnover and mainly occurs on lysine residues of nascent proteins, we systematically mutated individual lysine residues within BMP2 and tested them for enhanced stability. Results revealed that substitutions on four lysine residues within the pro-BMP2 region and three in the mature region increased both BMP2 turnover and extracellular secretion. Structural modeling revealed key lysine residues involved in proteasomal degradation occupy a lysine cluster near proprotein convertase cleavage site. Interestingly, mutations within these residues did not affect biological activity of BMP2. These data suggest preventing intracellular proteasomal loss of BMP2 through genetic modifications can overcome limitations related to its short half-life.

14.
Mol Ther Oncolytics ; 12: 41-48, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30666318

RESUMO

Carcinoembryonic antigen (CEA) is a human glycoprotein involved in cellular adhesion and expressed during human fetal development. Although expression of CEA largely ceases prior to birth, several human epithelial cancers, including colorectal, gastric, squamous esophageal, and breast carcinomas have been known to overexpress CEA, suggesting its potential as an immunotherapeutic target. Using a transgenic mouse model constitutively expressing human CEA in a spatiotemporal manner as a self-protein and a syngeneic mouse colon cancer cell line, MC38-CEA, overexpressing CEA, we tested the potential of a novel genetic immunotherapy approach against CEA-expressing tumors, using recombinant adeno-associated virus vector encoding CEA (rAAV-CEA) and appropriately timed immune adjuvant application. Results of the study demonstrated breaking of immune tolerance for CEA with this vaccine regimen and an anti-tumor response, resulting in tumor-free survival. Furthermore, tumor challenge of CEA-vaccinated mice with parental MC38 cells not expressing CEA did not result in protection from tumor development, confirming that the protection against tumor development is CEA specific. The study illustrates the feasibility of utilizing rAAV vectors in combination with an immunostimulatory adjuvant to break tolerance to weakly immunogenic self-antigens and for an anti-tumor response.

15.
Lab Invest ; 99(1): 93-106, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353130

RESUMO

The lack of consensus on bone marrow (BM) and splenic immune cell profiles in preclinical mouse strains complicates comparative analysis across different studies. Although studies have documented relative distribution of immune cells from peripheral blood in mice, similar studies for BM and spleen from naïve mice are lacking. In an effort to establish strain- and gender-specific benchmarks for distribution of various immune cell subtypes in these organs, we performed immunophenotypic analysis of BM cells and splenocytes from both genders of three commonly used murine strains (C57BL/6NCr, 129/SvHsd, and BALB/cAnNCr). Total neutrophils and splenic macrophages were significantly higher in C57BL/6NCr, whereas total B cells were lower. Within C57BL/6NCr female mice, BM B cells were elevated with respect to the males whereas splenic mDCs and splenic neutrophils were reduced. Within BALB/cAnNCr male mice, BM CD4+ Tregs were elevated with respect to the other strains. Furthermore, in male BALB/cAnNCr mice, NK cells were elevated with respect to the other strains in both BM and spleen. Splenic CD4+ Tregs and splenic CD8+ T cells were reduced in male BALB/c mice in comparison to female mice. Bone marrow CD4+ T cells and mDCs were significantly increased in 129/SvHsd whereas splenic CD8+ T cells were reduced. In general, males exhibited higher immature myeloid cells, macrophages, and NK cells. To our knowledge, this study provides a first attempt to systematically establish organ-specific benchmarks on immune cells in studies involving these mouse strains.


Assuntos
Camundongos Endogâmicos/imunologia , Animais , Contagem de Linfócito CD4 , Feminino , Masculino , Caracteres Sexuais , Especificidade da Espécie , Baço/imunologia
16.
Cancer Res ; 78(14): 3747-3754, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959150

RESUMO

Despite esophageal adenocarcinoma (EAC) being the most widespread among gastrointestinal cancers, with an 11-fold increase in the risk of cancer for patients with Barrett esophagus (BE), its prognosis is still poor. There is a critical need to better perceive the biology of cancer progression and identification of specific targets that are the hallmark of BE's progression. This review explores the established animal models of BE, including genetic, surgical and nonsurgical approaches, potential chemoprevention targets, and the reasoning behind their applications to prevent Barrett-related EAC. The key methodological features in the design feasibility of relevant studies are also discussed. Cancer Res; 78(14); 3747-54. ©2018 AACR.


Assuntos
Esôfago de Barrett/patologia , Esôfago de Barrett/prevenção & controle , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Animais , Progressão da Doença , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle , Humanos , Lesões Pré-Cancerosas/patologia , Prognóstico
17.
J Immunol ; 201(1): 278-295, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752311

RESUMO

Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity, affecting amino acid metabolism and T cell function in the tumor microenvironment. However, it is unknown whether MDSCs regulate B cell responses during tumor progression. Using a syngeneic mouse model of lung cancer, we show reduction in percentages and absolute numbers of B cell subsets including pro-, pre-, and mature B cells in the bone marrow (BM) of tumor-bearing mice. The kinetics of this impaired B cell response correlated with the progressive infiltration of MDSCs. We identified that IL-7 and downstream STAT5 signaling that play a critical role in B cell development and differentiation were also impaired during tumor progression. Global impairment of B cell function was indicated by reduced serum IgG levels. Importantly, we show that anti-Gr-1 Ab-mediated depletion of MDSCs not only rescued serum IgG and IL-7 levels but also reduced TGF-ß1, a known regulator of stromal IL-7, suggesting MDSC-mediated regulation of B cell responses. Furthermore, blockade of IL-7 resulted in reduced phosphorylation of downstream STAT5 and B cell differentiation in tumor-bearing mice and administration of TGF-ß-blocking Ab rescued these IL-7-dependent B cell responses. Adoptive transfer of BM-derived MDSCs from tumor-bearing mice into congenic recipients resulted in significant reductions of B cell subsets in the BM and in circulation. MDSCs also suppressed B cell proliferation in vitro in an arginase-dependent manner that required cell-to-cell contact. Our results indicate that tumor-infiltrating MDSCs may suppress humoral immune responses and promote tumor escape from immune surveillance.


Assuntos
Linfócitos B/imunologia , Interleucina-7/imunologia , Neoplasias Pulmonares/imunologia , Células Supressoras Mieloides/imunologia , Fator de Transcrição STAT5/imunologia , Evasão Tumoral/imunologia , Transferência Adotiva , Animais , Linfócitos B/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Imunoglobulina G/sangue , Interleucina-7/sangue , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/transplante , Fosforilação , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/sangue , Microambiente Tumoral/imunologia
18.
Genes (Basel) ; 8(9)2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28926997

RESUMO

DNA methylation is a major epigenetic event that affects not only cellular gene expression but that also has the potential to influence bacterial and viral DNA in their host-dependent functions. Adeno-associated virus (AAV) genome contains a high degree of CpG sequences capable of methylation in its terminal repeat sequences, which are the sole elements retained in AAV-based vectors used in gene therapy. The present study determined the influence of methylation status of the host cell on wild type (wt) AAV integration and recombinant (r) AAV transgene expression in HeLa cells. Results of the study indicated that hypo-methylation significantly enhanced both wtAAV chromosomal integration and transgene expression of rAAV. A direct influence of methylation on AAV integration was further confirmed by methylating the AAVS1 integration sites prior to viral infection with DNA trans-complementation assay. These results signify the importance of epigenetic status of target cells as one of the key factors in long-term transgene expression in AAV gene therapy.

19.
Sci Rep ; 7(1): 8678, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819116

RESUMO

Transforming growth factor (TGF)-ß1 contributes to autocrine and paracrine functions in the tumor microenvironment (TME). The present study examined the effects of TGF-ß1 crosstalk in TME and its role in mediating tumor formation and progression by targeted abrogation of TGF-ß1 expression in metastatic cells in situ. Using species-specific primers, we found a significant increase in MMP-9 gene expression in the tumor-reactive stroma during late-stage metastasis in the lung. This effect was also confirmed in cancer-associated fibroblasts (CAFs) when co-cultured with the tumor cells. Knockdown of TGF-ß1 expression in the tumor cells negatively affected matrix metalloproteinase (MMP)-9 gene expression. Fibroblasts, cultured in the presence of tumor cells with intact TGF-ß1, showed a significant increase in proliferation rate, as well as expression of VEGF, bFGF, and SDF-1, which was not seen when TGF-ß1 expression was abrogated in tumor cells. Absence of TGF-ß1 in tumor cells also failed to result in myofibroblast differentiation. Co-implantation of CAFs and tumor cells with either intact TGF-ß1 expression or devoid of TGF-ß1 in vivo showed a significant increase in tumor growth kinetics in both cell types, suggesting a possible activation TGF-ß receptor signaling in tumor cells in response to TGF-ß from the TME.


Assuntos
Inativação Gênica , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fator de Crescimento Transformador beta1/genética , Microambiente Tumoral/genética , Biomarcadores , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/patologia , Comunicação Parácrina , Transdução de Sinais/efeitos dos fármacos , Células Estromais/metabolismo
20.
Oncotarget ; 8(29): 47675-47690, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28504970

RESUMO

It is known that V-ATPases (vacuolar H+-ATPase) are involved in breast cancer growth and metastasis. Part of this action is similar to their role in osteoclasts, where they're involved in extracellular acidification and matrix destruction; however, the roles of their subunits in cancer cell proliferation, signaling, and other pro-tumor actions are not well established. Analysis of TCGA data shows that V-ATPase subunit Atp6v1c1 is overexpressed or amplified in 34% of human breast cancer cases, with a 2-fold decrease in survival at 12 years. Whereas other subunits, such as Atp6v1c2 and Atp6v0a3, are overexpressed or genomically amplified less often, 6% each respectively, and have less impact on survival. Experiments show that lentiviral-shRNA mediated ATP6v1c1 knockdown in 4T1 mouse mammary cancer cells significantly reduces orthotopic and intraosseous tumor growth. ATP6v1c1 knockdown also significantly reduces tumor stimulated bone resorption through osteoclastogenesis at the bone and metastasis in vivo, as well as V-ATPase activity, proliferation, and mTORC1 activation in vitro. To generalize the effects of ATP6v1c1 knockdown on proliferation and mTORC1 activation we used human cancer cell lines - MCF-7, MDA-MB-231, and MDA-MB-435s. ATP6V1C1 knockdown reduced cell proliferation and impaired mTORC1 pathway activation in cancer cells but not in the untransformed cell line C3H10T1/2. Our study reveals that V-ATPase activity may be mediated through mTORC1 and that ATP6v1c1 can be knocked down to block both V-ATPase and mTORC1 activity.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Biologia Computacional/métodos , Ativação Enzimática , Feminino , Amplificação de Genes , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Especificidade de Órgãos/genética , Osteólise , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...