Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(3): 847-865, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639869

RESUMO

The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.


Assuntos
Miocárdio , Miócitos Cardíacos , Proteínas Associadas à Matriz Nuclear , Monoéster Fosfórico Hidrolases , Animais , Camundongos , Animais Recém-Nascidos , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
2.
Front Oncol ; 12: 1008856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263199

RESUMO

Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35859996

RESUMO

This study examines the antioxidant and teratogenic effects of two different type's methods of formulating agar from Turbinaria conoides (T. conoides) using a zebrafish model. The agar was extracted using the aqueous extraction method and developed in two different formulations using separate procedures. Formulated agar1 (FA1) used a higher concentration of the ingredients while formulated agar 2 (FA2) had a lesser concentration. The two unique formulated agars (FAs) were studied using biochemical composition, Fourier infrared (FT-IR) spectroscopy, gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM). The antioxidant activities of both FAs in vitro were shown to be significantly different (P < 0.05) at various concentrations (60-180 µl/ml) in the study. The toxicity of the FAs was dose-dependent, with FA1 having the least teratogenic activity when compared to FA2. In comparison to FA2, FA1 was found to have higher antioxidant activity. At various concentrations (0.5, 0.25, and 0.125 µg/ml), the teratogenic activity of two FAs was examined in zebrafish embryos (ZFE) at 24, 48, 72, and 96 hours post fertilization (hpf). Both FAs exhibit dose-dependent toxicity and increased antioxidant activity, and this can be utilized as an alternative for standard antioxidants, according to this study.

4.
Oncol Rep ; 46(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328192

RESUMO

PIWI­interacting RNA is a class of non­coding small RNA that is ~30 nt long and is primarily found in mammalian germ cells from mice and humans. In cooperation with the members of PIWI protein family, this macromolecule participates in germ cell development, inhibits DNA self­-replication and maintains genomic stability. Increasing evidence has demonstrated that PIWI­interacting RNA (piRNAs) are abnormally expressed in various human cancers, such as liver cancer, stomach cancer, colorectal cancer, osteosarcoma, breast cancer, lung cancer, prostate cancer, etc. piRNAs abnormal expression is also associated with the occurrence and development of human cancers, such as liver cancer, stomach cancer, colorectal cancer, etc. Despite their unclear molecular mechanisms, piRNAs may act as oncogenes or tumor suppressors by interacting with multiple cancer­related signal pathways including STAT3/Bcl­xl or coding genes, such as heat shock transcription factor­1. Hence, piRNAs may be potential markers and targets and provide new opportunities for cancer diagnosis, treatment or prognosis monitoring. The current review mainly aims to highlight the latest research progress made in the biological functions and regulation of piRNAs in mammals, their involvement in various cancer forms and their potential clinical applications.


Assuntos
Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Humanos
5.
Nat Cell Biol ; 22(11): 1319-1331, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020597

RESUMO

PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3ß and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.


Assuntos
Adenosina/análogos & derivados , Ventrículos do Coração/enzimologia , Hipertrofia Ventricular Esquerda/enzimologia , Metiltransferases/metabolismo , Miócitos Cardíacos/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Função Ventricular Esquerda , Adenosina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Metilação , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Remodelação Ventricular
6.
Theranostics ; 10(2): 553-566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903137

RESUMO

Mitochondrial dysfunction is involved in the pathogenesis of various cardiovascular disorders. Although mitochondrial dynamics, including changes in mitochondrial fission and fusion, have been implicated in the development of cardiac hypertrophy, the underlying molecular mechanisms remain mostly unknown. Here, we show that NFATc3, miR-153-3p, and mitofusion-1 (Mfn1) constitute a signaling axis that mediates mitochondrial fragmentation and cardiomyocyte hypertrophy. Methods: Isoprenaline (ISO) was used to stimulate the hypertrophic response and mitochondrial fragmentation in cultured cardiomyocytes and in vivo. We performed immunoblotting, immunofluorescence, and quantitative real-time PCR to validate the function of Mfn1 in cardiomyocyte hypertrophy. Bioinformatic analyses, a luciferase reporter assay, and gain- and loss-of-function studies were used to demonstrate the biological function of miR-153-3p, which regulates mitochondrial fragmentation and hypertrophy by targeting Mfn1. Moreover, ChIP-qPCR and a luciferase reporter assay were performed to identify transcription factor NFATc3 as an upstream regulator to control the expression of miR-153-3p. Results: Our results show that ISO promoted mitochondrial fission and enhanced the expression of miR-153-3p in cardiomyocytes. Knockdown of miR-153-3p attenuated ISO-induced mitochondrial fission and hypertrophy in cultured primary cardiomyocytes. miR-153-3p suppression inhibited mitochondrial fragmentation in ISO-induced cardiac hypertrophy in a mouse model. We identified direct targeting of Mfn1, a key protein of the mitochondrial fusion process, by miR-153-3p. Also, miR-153-3p promoted ISO-induced mitochondrial fission by suppressing the translation of Mfn1. We further found that NFATc3 activated miR-153-3p expression. Knockdown of NFATc3 inhibited miR-153-3p expression and blocked mitochondrial fission and hypertrophic response in cardiomyocytes. Conclusions: Our data revealed a novel signaling pathway, involving NFATc3, miR-153-3p, and Mfn1, which could be a therapeutic target for the prevention and treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia/patologia , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , GTP Fosfo-Hidrolases/genética , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais
7.
Cancer Lett ; 458: 1-12, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31132431

RESUMO

Growing evidence suggests that alterations of gene expression including expression and activities of transcription factors are closely associated with carcinogenesis. Forkhead Box Class K (FOXK) proteins, FOXK1 and FOXK2, are a family of evolutionarily conserved transcriptional factors, which have recently been recognized as key transcriptional regulators involved in many types of cancer. Members of the FOXK family mediate a wide spectrum of biological processes, including cell proliferation, differentiation, apoptosis, autophagy, cell cycle progression, DNA damage and tumorigenesis. Therefore, the deregulation of FOXKs can affect the cell fate and they promote tumorigenesis as well as cancer progression. The mechanisms of FOXKs regulation including post-translational modifications (PTMs), microRNAs (miRNAs) and protein-protein interactions are well demonstrated. However, the detailed mechanisms of FOXKs activation and deregulation in cancer progression are still inconclusive. In this review, we summarize the regulatory mechanisms of FOXKs expression and activity, and their role in the development and progression of cancer. We have discussed whether FOXKs act as tumor suppressors/oncoproteins in tumor cells and their therapeutic applications in malignant diseases are also discussed. This review may assist in designing experimental studies involving FOXKs and it would strength the therapeutic potential of FOXKs as targets for cancers.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animais , Progressão da Doença , Humanos , Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transcrição Gênica
8.
Circulation ; 139(23): 2668-2684, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832495

RESUMO

BACKGROUND: The adult mammalian cardiomyocytes lose their proliferative capacity, which is responsible for cardiac dysfunction and heart failure following injury. The molecular mechanisms underlying the attenuation of adult cardiomyocyte proliferation remain largely unknown. Because long noncoding RNAs (lncRNAs) have a critical role in the development of cardiovascular problems, we investigated whether lncRNAs have any role in the regulation of cardiomyocyte proliferation and cardiac repair. METHODS: Using bioinformatics and initial analysis, we identified an lncRNA, named CPR (cardiomyocyte proliferation regulator), that has a potential regulatory role in cardiomyocyte proliferation. For in vivo experiments, we generated CPR knockout and cardiac-specific CPR-overexpressing mice. In isolated cardiomyocytes, we used adenovirus for silencing (CPR-small interfering RNA) or overexpressing CPR. To investigate the mechanisms of CPR function in cardiomyocyte proliferation, we performed various analyses including quantitative reverse transcription-polymerase chain reaction, Western blot, histology, cardiac function (by echocardiography), transcriptome analyses (microarray assay), RNA pull-down assay, and chromatin immunoprecipitation assay. RESULTS: CPR level is comparatively higher in the adult heart than in the fetal stage. The silencing of CPR significantly increased cardiomyocyte proliferation in postnatal and adult hearts. Moreover, CPR deletion restored the heart function after myocardial injury, which was evident from increased cardiomyocyte proliferation, improvement of myocardial function, and reduced scar formation. In contrast, the neonatal cardiomyocyte proliferation and cardiac regeneration were remarkably suppressed in CPR-overexpressing mice or adeno-associated virus serotype 9-CPR-overexpressing heart. These results indicate that CPR acts as a negative regulator of cardiomyocyte proliferation and regeneration. Next, we found that CPR targets minichromosome maintenance 3, an initiator of DNA replication and cell cycle progression, to suppress cardiomyocyte proliferation. CPR silenced minichromosome maintenance 3 expression through directly interacting and recruiting DNMT3A to its promoter cysteine-phosphate-guanine sites, as evident from decreased minichromosome maintenance 3 promoter methylation and increased minichromosome maintenance 3 expression in CPR knocked-down cardiomyocytes and CPR knockout mouse heart. These results were confirmed in CPR-overexpressing cardiomyocytes and CPR-overexpressing mouse heart. CONCLUSIONS: Together, our findings identified that CPR is a suppressor of cardiomyocyte proliferation and indicated that lncRNAs take part in the regulation of cardiomyocyte proliferation and cardiac repair. Our study provides an lncRNA-based therapeutic strategy for effective cardiac repair and regeneration.


Assuntos
Proliferação de Células , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/metabolismo , Regeneração , Animais , Animais Recém-Nascidos , Sítios de Ligação , Ciclo Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Componente 3 do Complexo de Manutenção de Minicromossomo/genética , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Transdução de Sinais
9.
RNA Biol ; 16(2): 233-248, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30628514

RESUMO

The development of chemotherapeutic drugs resistance such as doxorubicin (DOX) and cisplatin (DDP) is the major barrier in gastric cancer therapy. Emerging evidences reveal that microRNAs (miRNAs) contribute to chemosensitivity. In this study, we investigated the role of miR-633, an oncogenic miRNA, in gastric cancer chemoresistance. In gastric cancer tissue and cell lines, miR-633 expression was highly increased and correlated with down regulation of Fas-associated protein with death domain (FADD). Inhibition of miR-633 significantly increased FADD protein level and enhanced DOX/DDP induced apoptosis in vitro. MiR-633 antagomir administration remarkably decreased tumor growth in combination with DOX in vivo, suggesting that miR-633 targets FADD to block gastric cancer cell death. We found that the promoter region of miR-633 contained putative binding sites for forkhead box O 3 (Foxo3a), which can directly repress miR-633 transcription. In addition, we observed that DOX-induced nuclear accumulation of Foxo3a leaded to the suppression of miR-633 transcription. Together, our study revealed that miR-633/FADD axis played a significant role in the chemoresistance and Foxo3a regulated this pathway in gastric cancer. Thus, miR-633 antagomir resensitized gastric cancer cells to chemotherapy drug and had potentially therapeutic implication.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína Forkhead Box O3/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Interferência de RNA , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Death Differ ; 26(7): 1299-1315, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30349076

RESUMO

Dysregulated autophagy is associated with many pathological disorders such as cardiovascular diseases. Emerging evidence has suggested that circular RNAs (circRNAs) have important roles in some biological processes. However, it remains unclear whether circRNAs participate in the regulation of autophagy. Here we report that a circRNA, termed autophagy-related circular RNA (ACR), represses autophagy and myocardial infarction by targeting Pink1-mediated phosphorylation of FAM65B. ACR attenuates autophagy and cell death in cardiomyocytes. Moreover, ACR protects the heart from ischemia/reperfusion (I/R) injury and reduces myocardial infarct sizes. We identify Pink1 as an ACR target to mediate the function of ACR in cardiomyocyte autophagy. ACR activates Pink1 expression through directly binding to Dnmt3B and blocking Dnmt3B-mediated DNA methylation of Pink1 promoter. Pink1 suppresses autophagy and Pink1 transgenic mice show reduced myocardial infarction sizes. Further, we find that FAM65B is a downstream target of Pink1 and Pink1 phosphorylates FAM65B at serine 46. Phosphorylated FAM65B inhibits autophagy and cell death in the heart. Our findings reveal a novel role for the circRNA in regulating autophagy and ACR-Pink1-FAM65B axis as a regulator of autophagy in the heart will be potential therapeutic targets in treatment of cardiovascular diseases.


Assuntos
Autofagia , Moléculas de Adesão Celular/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Quinases/metabolismo , RNA Circular/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas Quinases/genética
11.
Mol Ther Nucleic Acids ; 12: 405-419, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195778

RESUMO

Gastric cancer is one of the most prevalent tumor types in the world. Chemotherapy is the most common choice for cancer treatment. However, chemotherapy resistance and adverse side effects limit its clinical applications. Aberrant expression of long noncoding RNAs (lncRNAs) has been found in various stages of gastric cancer development and progression. In this study, we identified that an oncogenic lncRNA, long intergenic non-protein-coding RNA D63785 (lncR-D63785), is highly expressed in gastric cancer tissues and cells. Silencing of lncR-D63785 inhibited cell proliferation, cell migration and invasion in gastric cancer cell lines and reduced tumor volume and size in mice. We found that the expression of lncR-D63785 was inversely correlated with microRNA 422a (miR-422a) expression, which was involved in the downregulation of expression of myocyte enhancer factor-2D (MEF2D) and drug sensitivity. Knockdown of lncR-D63785 increased the expression of miR-422a and the sensitivity of gastric cancer cells to apoptosis induced by the anticancer drug doxorubicin (DOX). This indicates that lncR-D63785 acts as a competitive endogenous RNA (ceRNA) of miR-422a and promotes chemoresistance by blocking miR-422-dependent suppression of MEF2D. Together, our results suggest that the therapeutic suppression of lncR-D63785 alone or in combination with chemotherapeutic agents may be a promising strategy for treating gastric cancer.

12.
J Cell Mol Med ; 22(10): 4558-4567, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102008

RESUMO

Ubiquitination, also known as ubiquitylation, is a vital post-translational modification of proteins that play a crucial role in the multiple biological processes including cell growth, proliferation and apoptosis. K63-linked ubiquitination is one of the vital post-translational modifications of proteins that are involved in the activation of protein kinases and protein trafficking during cell survival and proliferation. It also contributes to the development of various disorders including cancer, neurodegeneration and cardiac hypertrophy. In this review, we summarize the role of K63-linked ubiquitination signalling in protein kinase activation and its implications in cardiac hypertrophy. We have also provided our perspectives on therapeutically targeting K63-linked ubiquitination in downstream effector molecules of growth factor receptors for the treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Lisina/metabolismo , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Fator 6 Associado a Receptor de TNF/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
13.
PeerJ ; 6: e5503, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155370

RESUMO

Circular RNA (circRNA) is an endogenous noncoding RNA with a covalently closed cyclic structure. Based on their components, circRNAs are divided into exonic circRNAs, intronic circRNAs, and exon-intron circRNAs. CircRNAs have well-conserved sequences and often have high stability due to their resistance to exonucleases. Depending on their sequence, circRNAs are involved in different biological functions, including microRNA sponge activity, modulation of alternative splicing or transcription, interaction with RNA-binding proteins, and rolling translation, and are a derivative of pseudogenes. CircRNAs are involved in the development of a variety of pathological conditions, such as cardiovascular diseases, diabetes, neurological diseases, and cancer. Emerging evidence has shown that circRNAs are likely to be new potential clinical diagnostic markers or treatments for many diseases. Here we describe circRNA research methods and biological functions, and discuss the potential relationship between circRNAs and disease progression.

14.
Int J Biol Sci ; 14(9): 1133-1141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989099

RESUMO

Cardiac hypertrophy is an adaptive enlargement of myocardium in response to pressure overload caused various pathological insults, which is accompanied by alteration of a complex cascade of signaling pathways. During the hypertrophy process, many changes occur at cellular level including gene reprogramming by turning off chromatin regulators. Studies from the past decade have demonstrated that the abnormal epigenetic modifications, such as DNA methylation, histone modification, and oxidative modification of nucleic acid, could lead to changes in chromosome structure and cardiac dysfunction. Increasing evidence indicates that non-coding RNAs (ncRNAs) have functional significance in modulating the gene expression during those pathological events in the heart. Emerging evidences have highlighted that ncRNAs might serve as a signal for changing the state of chromatin, however, the knowledge about the ncRNA-linked epigenetic regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the current information on association between ncRNAs and epigenetic modifications in cardiac hypertrophy, and we have discussed their crosstalk. In addition, this review provides insights into their therapeutic and diagnostic potential for treating hypertrophic heart disease.


Assuntos
Cardiomegalia/metabolismo , RNA não Traduzido/metabolismo , Animais , Cardiomegalia/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Humanos , MicroRNAs/metabolismo , RNA não Traduzido/genética
15.
Mol Cancer ; 17(1): 104, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045773

RESUMO

FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational modifications (PTMs) and protein-protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential, and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings and overview of the current understanding of the influence of FOXO3a in cancer development and progression.


Assuntos
Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Neoplasias/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Mutação , Neoplasias/genética , Processamento de Proteína Pós-Traducional
16.
Cardiovasc Ther ; 36(4): e12436, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29797660

RESUMO

Atherosclerosis is one of the major macrovascular complications of diabetes mellitus (DM), and it is the main cause of death from clinical observation. Among various cell types involved in this disorder, endothelial cells, vascular smooth muscle cells (VSMCs), and macrophages play a crucial role in the occurrence and development of this disease. The regulation and stabilization of these cells are a key therapeutic strategy for DM-associated atherosclerosis. An increasing number of evidences implicate that various types of noncoding RNAs (ncRNAs) play a vital role in many cellular responses as well as in physiological and pathological processes of atherosclerosis and DM that drive atherogenic/antiatherogenic processes in those cells. Encouragingly, many ncRNAs have already been tested in animal experiments or clinical trials showing good performance. In this review, we summarize recent progresses in research on functional regulatory role of ncRNAs in atherosclerosis with DM. More importantly, we illustrate new thoughts and findings relevant to ncRNAs as potential therapeutic targets or biomarkers for atherosclerosis with DM.


Assuntos
Aterosclerose/terapia , Vasos Sanguíneos/metabolismo , Angiopatias Diabéticas/terapia , Terapia Genética/métodos , RNA não Traduzido/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Vasos Sanguíneos/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Placa Aterosclerótica , RNA não Traduzido/metabolismo , Resultado do Tratamento
17.
Atherosclerosis ; 272: 153-161, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29609130

RESUMO

Coronary heart disease (CHD) is one of the leading disorders with the highest mortality rate. Percutaneous angioplasty and stent implantation are the currently available standard methods for the treatment of obstructive coronary artery disease. However, the stent being an exogenous substance causes several complications by promoting the proliferation of vascular smooth muscle cells, immune responses and neointima formation after implantation, leading to post-stent restenosis (ISR) and late thrombosis. The prevention of these adverse vascular events is important to achieve long-term proper functioning of the heart after stent implantation. Non-coding ribonucleic acids (ncRNAs) are RNA molecules not translated into proteins, theyhave a great potential in regulating endothelial cell and vascular smooth muscle function as well as inflammatory reactions. In this review, we outline the regulatory functions of different classes of ncRNA in cardiovascular disease and propose ncRNAs as new targets for stent restonosis treatment.


Assuntos
Reestenose Coronária/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA não Traduzido/metabolismo , Stents , Animais , Doença da Artéria Coronariana/complicações , Doença das Coronárias/metabolismo , Stents Farmacológicos/efeitos adversos , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Intervenção Coronária Percutânea/efeitos adversos , RNA Interferente Pequeno/metabolismo
18.
Nat Commun ; 9(1): 29, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295976

RESUMO

Increasing evidence suggests that long noncoding RNAs (lncRNAs) play crucial roles in various biological processes. However, little is known about the effects of lncRNAs on autophagy. Here we report that a lncRNA, termed cardiac autophagy inhibitory factor (CAIF), suppresses cardiac autophagy and attenuates myocardial infarction by targeting p53-mediated myocardin transcription. Myocardin expression is upregulated upon H2O2 and ischemia/reperfusion, and knockdown of myocardin inhibits autophagy and attenuates myocardial infarction. p53 regulates cardiomyocytes autophagy and myocardial ischemia/reperfusion injury by regulating myocardin expression. CAIF directly binds to p53 protein and blocks p53-mediated myocardin transcription, which results in the decrease of myocardin expression. Collectively, our data reveal a novel CAIF-p53-myocardin axis as a critical regulator in cardiomyocyte autophagy, which will be potential therapeutic targets in treatment of defective autophagy-associated cardiovascular diseases.


Assuntos
Autofagia/genética , Infarto do Miocárdio/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Transativadores/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Cell Mol Life Sci ; 75(2): 291-300, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28913665

RESUMO

Loss of functional cardiomyocytes is a major underlying mechanism for myocardial remodeling and heart diseases, due to the limited regenerative capacity of adult myocardium. Apoptosis, programmed necrosis, and autophagy contribute to loss of cardiac myocytes that control the balance of cardiac cell death and cell survival through multiple intricate signaling pathways. In recent years, non-coding RNAs (ncRNAs) have received much attention to uncover their roles in cell death of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, and heart failure. In addition, based on the view that mitochondrial morphology is linked to three types of cell death, ncRNAs are able to regulate mitochondrial fission/fusion of cardiomyocytes by targeting genes involved in cell death pathways. This review focuses on recent progress regarding the complex relationship between apoptosis/necrosis/autophagy and ncRNAs in the context of myocardial cell death in response to stress. This review also provides insight into the treatment for heart diseases that will guide novel therapies in the future.


Assuntos
Apoptose/genética , Autofagia/genética , Doenças Cardiovasculares/genética , Miócitos Cardíacos/metabolismo , RNA não Traduzido/genética , Animais , Doenças Cardiovasculares/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Genéticos , Necrose , RNA não Traduzido/metabolismo
20.
Int J Biol Sci ; 13(12): 1497-1506, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230098

RESUMO

Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), are ubiquitously expressed in eukaryotic cells during post-transcriptional processes. Unlike linear RNAs, circRNAs form covalent-closed continuous loops without 5' to 3' polarities and poly (A) tails. With advances in high-throughput sequencing technology, numerous circRNAs have been identified in plants, animals and humans. Notably, circRNAs display cell-type, tissue-type and developmental-stage specific expression patterns in eukaryotic transcriptome, which reveals their significant regulatory functions in gene expression. More importantly, circRNAs serve as microRNA (miRNA) sponges and crucial regulators of gene expression. Additionally, circRNAs modulate pre-mRNA alternative splicing and possess protein-coding capacity. CircRNAs exhibit altered expression under pathological conditions and are strongly associated with the development of various human diseases. Interestingly, circRNAs can also induce antiviral immune responses. A recent study found that the delivery of circRNAs generated in vitro activates RIG-I-mediated innate immune responses and provides protection against viral infection. The antiviral dsRNA-binding proteins, NF90/NF110, act as key regulators in circRNA biogenesis. NF90/NF110 are also functional in inhibiting viral replication through binding to viral mRNAs. In this review, we provide a comprehensive overview on the classification, biogenesis and functions of circRNAs. We also discuss the critical role of circRNAs in eliciting antiviral immunity, providing evidence for the potential implications of circRNAs in antiviral therapies.


Assuntos
RNA/fisiologia , Viroses/imunologia , Processamento Alternativo , Animais , Expressão Gênica , Humanos , RNA/biossíntese , Splicing de RNA , RNA Circular , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...