Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 15(2): e8503, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777892

RESUMO

Genome-, transcriptome- and proteome-wide measurements provide insights into how biological systems are regulated. However, fundamental aspects relating to which human proteins exist, where they are expressed and in which quantities are not fully understood. Therefore, we generated a quantitative proteome and transcriptome abundance atlas of 29 paired healthy human tissues from the Human Protein Atlas project representing human genes by 18,072 transcripts and 13,640 proteins including 37 without prior protein-level evidence. The analysis revealed that hundreds of proteins, particularly in testis, could not be detected even for highly expressed mRNAs, that few proteins show tissue-specific expression, that strong differences between mRNA and protein quantities within and across tissues exist and that protein expression is often more stable across tissues than that of transcripts. Only 238 of 9,848 amino acid variants found by exome sequencing could be confidently detected at the protein level showing that proteogenomics remains challenging, needs better computational methods and requires rigorous validation. Many uses of this resource can be envisaged including the study of gene/protein expression regulation and biomarker specificity evaluation.


Assuntos
Genoma Humano/genética , Proteoma/genética , Distribuição Tecidual/genética , Transcriptoma/genética , Regulação da Expressão Gênica/genética , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
2.
Mol Syst Biol ; 15(2): e8513, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777893

RESUMO

Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.


Assuntos
Proteínas/genética , Proteoma/genética , Distribuição Tecidual/genética , Transcriptoma/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
3.
Exp Cell Res ; 339(2): 280-8, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26511503

RESUMO

Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.


Assuntos
Glioma/metabolismo , Glioma/patologia , Microglia/metabolismo , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/metabolismo , Biologia Computacional , Feminino , Humanos , Masculino , Microglia/patologia , Monócitos/patologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Análise Serial de Tecidos , Proteínas Wnt/biossíntese , Proteínas Wnt/genética , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...