Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139901

RESUMO

Electronic devices are sensitive to electromagnetic (EM) emissions, and require electromagnetic shielding protection to ensure good operation, and prevent noise, malfunctioning, or even burning. To ensure protection, it is important to develop suitable material and design solutions for electronic enclosures. Most common enclosures are made with metal alloys using traditional manufacturing methods. However, using thermoplastic composites combined with additive manufacturing (AM) technologies emerges as an alternative that enables the fabrication of complex parts that are lightweight, consolidated, and oxidation- and corrosion-resistant. In this research, an AM technique based on material extrusion was used to print 2 mm-thick specimens with a multi-material made of micro-carbon fiber (CF)-filled polyamide that was reinforced at specific layers using continuous carbon fibers stacked with a 90° rotation to each other. The specimens' electromagnetic shielding effectiveness (EMSE) was evaluated in the frequency band of 0.03-3 GHz using the coaxial transmission line method. Depending on the number of CF layers, the EM shielding obtained can be up to 70 dB, with a specific shielding up to 60 dB.cm3/g, predominantly by the absorption mechanism, being 22 times higher than without the CF layers. These findings promote this innovative approach to lightweight customizable solutions for EM shielding applications.

2.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763497

RESUMO

The technological, social and economic development observed in recent decades brought an exponential increase in consumption and inherent new challenges. Recycling is one of the best solutions to minimize the environmental impact of raw materials. However, multi-material components are difficult or even impossible to recycle. The present work focuses on the reduction in the number of different materials used in multifunctional components. In particular, it intends to assess the potential of injecting molding grades of polypropylene (PP) to produce parts with transparency (haze) gradients. Firstly, several polypropylene grades of different types were identified and injected under various thermal processing conditions, i.e., injection temperature and mold temperature, in order to vary the cooling rate, influencing the growth rate of the spherulites and eventually the presence/absence of α and ß crystalline zones. The injected parts' optical properties were then characterized, and the most promising PP grades were identified and selected for subsequent work, namely grade DR 7037.01, showing the widest range of haze (from 29.2 to 68.7%). and PP070G2M, presenting the highest haze value (75.3%). Finally, in an attempt to understand the origin of the haze variations observed, the parts injected with the selected PP grades were further characterized through differential scanning calorimetry (DSC) and polarized light microscopy. It was concluded that the main factor causing the observed haze difference was, apart from the size of the spherulites, the presence of internal layers with different birefringence and, therefore, different refractive indices.

3.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050629

RESUMO

In the highly competitive injection molding industry, the ability to effectively collect information from various sensors installed in molds and machines is of the utmost relevance, enabling the development of data-based Industry 4.0 algorithms. In this work, an alternative to commercially available monitoring systems used in the industry was developed and tested in the scope of the TOOLING 4G project. The novelty of this system is its affordability, simplicity, real-time data acquisition and display in an intuitive Graphical User Interface (GUI), while being open-source firmware and software-based. These characteristics, and their combinations have been present in previous works, but, to the authors' knowledge, not all of them simultaneously. The system used an Arduino microcontroller-based data acquisition module that can be connected to any computer via a USB port. Software was developed, including a GUI, prepared to receive data from both the Arduino module and a second module. In the current state of development, data corresponding to a maximum of six sensors can be visualized, at a rate of 10 Hz, and recorded for later usage. These capabilities were verified under real-world conditions for monitoring an injection mold with the objective of creating the basis of a platform to deploy predictive maintenance. Mold temperature, cavity pressure, 3-axis acceleration, and extraction force data showed the system can successfully monitor the mold and allowed the clear distinction between normal and abnormal operating patterns.

4.
Sensors (Basel) ; 22(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591113

RESUMO

Machine end-effector kinematic analysis is critical to optimizing transporting components where inertial forces are the main loads. While displacements may be measured with relatively high accuracy in transportation equipment motors, the inertial forces in the transported components are seldom optimized. This is especially relevant in electronic component placement systems, where the components have a wide range of configurations (i.e., geometry and mass) and the deployment dimensional/geometric tolerances are remarkably good. The optimization of these systems requires the monitoring of the real position of the accelerometers relative to the measurement point of interest with sufficient accuracy that allows the assembly position to be predicted instantaneously. This study shows a novel method to calibrate this equipment using triaxial accelerometers on a surface mount machine to measure the end-effector accelerations and velocities in its planar motion. The dynamic equations of the system and the method for integration are presented to address the uncertainty on the exact position of the accelerometer sensors relative to the measuring point of interest exist and allow the position correction to optimize response and accuracy.


Assuntos
Aceleração , Acelerometria , Fenômenos Biomecânicos , Movimento (Física)
5.
Polymers (Basel) ; 13(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066642

RESUMO

The main characteristic of materials with a functional gradient is the progressive composition or the structure variation across its geometry. This results in the properties variation in one or more specific directions, according to the functional application requirements. Cellular structure flexibility in tailoring properties is employed frequently to design functionally-graded materials. Topology optimisation methods are powerful tools to functionally graded materials design with cellular structure geometry, although continuity between adjacent unit-cells in gradient directions remains a restriction. It is mandatory to attain a manufacturable part to guarantee the connectedness between adjoining microstructures, namely by ensuring that the solid regions on the microstructure's borders i.e., kinematic connectors) match the neighboring cells that share the same boundary. This study assesses the kinematic connectors generated by imposing local density restrictions in the initial design domain (i.e., nucleation) between topologically optimised representative unit-cells. Several kinematic connector examples are presented for two representatives unit-cells topology optimised for maximum bulk and shear moduli with different volume fractions restrictions and graduated Young's modulus. Experimental mechanical tests (compression) were performed, and comparison studies were carried out between experimental and numerical Young's modulus. The results for the single maximum bulk for the mean values for experimental compressive Young's modulus (Ex¯) with 60%Vf show a deviation of 9.15%. The single maximum shear for the experimental compressive Young's modulus mean values (Ex¯) with 60%Vf, exhibit a deviation of 11.73%. For graded structures, the experimental mean values of compressive Young's moduli (Ex¯), compared with predicted total Young's moduli (ESe), show a deviation of 6.96 for the bulk graded structure. The main results show that the single type representative unit-cell experimental Young's modulus with higher volume fraction presents a minor deviation compared with homogenized data. Both (i.e., bulk and shear moduli) graded microstructures show continuity between adjacent cells. The proposed method proved to be suitable for generating kinematic connections for the design of shear and bulk graduated microstructured materials.

6.
Materials (Basel) ; 14(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919652

RESUMO

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.

7.
Materials (Basel) ; 14(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921131

RESUMO

Additive Manufacturing (AM) technology has been increasing its penetration not only for the production of prototypes and validation models, but also for final parts. This technology allows producing parts with almost no geometry restrictions, even on a micro-scale. However, the micro-Detail (mD) measurement of complex parts remains an open field of investigation. To be able to develop all the potential that this technology offers, it is necessary to quantify a process's precision limitations, repeatability, and reproducibility. New design methodologies focus on optimization, designing microstructured parts with a complex material distribution. These methodologies are based on mathematical formulations, whose numerical models assume the model discretization through volumetric unitary elements (voxels) with explicit dimensions and geometries. The accuracy of these models in predicting the behavior of the pieces is influenced by the fidelity of the object's physical reproduction. Despite that the Material Jetting (MJ) process makes it possible to produce complex parts, it is crucial to experimentally establish the minimum dimensional and geometric limits to produce parts with mDs. This work aims to support designers and engineers in selecting the most appropriate scale to produce parts discretized by hexahedral meshes (cubes). This study evaluated the dimensional and geometric precision of MJ equipment in the production of mDs (cubes) comparing the nominal design dimensions. A Sample Test (ST) with different sizes of mDs was modeled and produced. The dimensional and geometric precision of the mDs were quantified concerning the nominal value and the calculated deviations. From the tests performed, it was possible to conclude that: (i) more than 90% of all analyzed mDs exhibit three dimensions (xyz) higher than the nominal ones; (ii) for micro-details smaller than 423 µm, they show a distorted geometry, and below 212 µm, printing fails.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...