Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(45): 9430-9441, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37920974

RESUMO

The phenalene (triangulene) and olympicene molecules belong to the polycyclic aromatic hydrocarbon class, which have attracted substantial technological interest due to their unique electronic properties. Electronic structure calculations serve as a valuable tool in investigating the stability and reactivity of these molecular systems. In the present work, the multireference calculations, namely, the complete active space second-order perturbation theory and multireference averaged quadratic coupled cluster (MR-AQCC), were employed to study the reactivity and stability of phenalene and olympicene isomers, as well as their modified structures where the sp3-carbon at the borders were removed. The harmonic oscillator model of aromaticity (HOMA) and the nucleus-independent chemical shift as geometric and magnetic indexes calculated with density functional theory were utilized to assess the aromaticity of the studied molecules. These indexes were compared with properties such as the excitation energy and natural orbitals occupation. The reactivity analyzed using the HOMA index combined with MR-AQCC revealed the radical character of certain structures as well as the weakening of their aromaticity. Moreover, the results suggest that the removal of sp3-carbon atoms and the addition of hydrogen atoms did not alter the π network and the excitation energies of the phenalene molecules.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 233: 118210, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163875

RESUMO

Ultracold environments composed by atoms or molecules offer an opportunity to study chemical reactions at the quantum-state level, for simulation of solid-state systems, as qubits in quantum computing, and for test fundamental symmetries. Those ultracold conditions formed by molecules can be obtained from cryogenic buffer gas, via supersonic expansion, followed by deceleration or from the laser cooling process. Diatomic alkaline earth monofluoride molecules have been shown as great candidates for the laser cooling process. In this sense, the present work focuses on the characterization of the low-lying doublet electronic states correlated to the first dissociation channel of the alkaline earth monofluorides diatomic molecules MF (M = Be, Mg and Ca). The developed state-of-the-art methodology was based on a qualitative analysis of the diatomic electronic structure, employing a hypothetical potential energy curve or by a simple molecular orbital diagram combined with bond order analysis. The potential energy curves, excitation and dissociation energies, and various sets of spectroscopic parameters were calculated by the MRCI/cc-pV5Z methodology. Transition probabilities for emission and radiative lifetimes among the characterized electronic states were also calculated for the (A)2Π âŸ¶ (X)2Σ+ electronic transition. Comparing the spectroscopy properties, we were able to indicate the CaF molecule as the best candidate molecule for laser cooling devices among the studied molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...