Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170391, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281645

RESUMO

Permafrost and active layer models often cannot explain the high spatial variability, especially in heterogeneous environments like the mountainous regions due to their scarce resolution, paucity of climatic data and topographic details. In this study, we want to introduce a new application of the unmanned aerial vehicle (UAV) in thermal photogrammetry to model the active layer thickness (ALT) of an alpine rock wall through the computation of the thermal inertia and compare the results with a widespread ALT model. On the Gran Zebrù South rock wall, 8 thermal UAV surveys has been conducted in 4 different summer days during 2021-2022 in order to have two 3D thermal models per day at different solar radiation inputs. By analyzing topographic data, visible imagery and the thermal models, the apparent thermal inertias (ATIs) have been converted into heat transfer coefficients (HTCs) and then into ALT of 2021 and 2022. These maps have been validated through the placement of thermistors at different elevations and with variable depths (2, 15 and 40 cm from the rock surface). The resulting ALT has been compared with the Stefan's solution and the alpine permafrost index map (APIM), which showed large underestimations and a noncorrespondence with permafrost occurrence. The average ALT increase of 29.3 cm from 2021 to 2022 has been discussed regarding permafrost formation/degradation future trend under the climatic change and potential risks of alpine areas.

2.
J Fungi (Basel) ; 9(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37108890

RESUMO

Rock glaciers are relatively common in Antarctic permafrost areas and could be considered postglacial cryogenic landforms. Although the extensive presence of rock glaciers, their chemical-physical and biotic composition remain scarce. Chemical-physical parameters and fungal community (by sequencing the ITS2 rDNA, Illumina MiSeq) parameters of a permafrost core were studied. The permafrost core, reaching a depth of 6.10 m, was divided into five units based on ice content. The five units (U1-U5) of the permafrost core exhibited several significant (p < 0.05) differences in terms of chemical and physical characteristics, and significant (p < 0.05) higher values of Ca, K, Li, Mg, Mn, S, and Sr were found in U5. Yeasts dominated on filamentous fungi in all the units of the permafrost core; additionally, Ascomycota was the prevalent phylum among filamentous forms, while Basidiomycota was the dominant phylum among yeasts. Surprisingly, in U5 the amplicon sequence variants (ASVs) assigned to the yeast genus Glaciozyma represented about two-thirds of the total reads. This result may be considered extremely rare in Antarctic yeast diversity, especially in permafrost habitats. Based on of the chemical-physical composition of the units, the dominance of Glaciozyma in the deepest unit was correlated with the elemental composition of the core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...