Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 114(5): 524-534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506955

RESUMO

Pre-proenkephalin 1 (Penk1) is a pro-neuropeptide that belongs to the typical opioid peptide's family, having analgesic properties. We previously found Penk1 to be the most downregulated gene in a whole gene profiling analysis performed in osteoblasts subjected to microgravity as a model of mechanical unloading. In this work, Penk1 downregulation was confirmed in the bones of two in vivo models of mechanical unloading: tail-suspended and botulinum toxin A (botox)-injected mice. Consistently, in the sera from healthy volunteers subjected to bed rest, we observed an inverse correlation between PENK1 and bed rest duration. These results prompted us to investigate a role for this factor in bone. Penk1 was highly expressed in mouse bone, but its global deletion failed to impact bone metabolism in vivo. Indeed, Penk1 knock out (Penk1-/-) mice did not show an overt bone phenotype compared to the WT littermates. Conversely, in vitro Penk1 gene expression progressively increased during osteoblast differentiation and its transient silencing in mature osteoblasts by siRNAs upregulated the transcription of the Sost1 gene encoding sclerostin, and decreased Wnt3a and Col1a1 mRNAs, suggesting an altered osteoblast activity due to an impairment of the Wnt pathway. In line with this, osteoblasts treated with the Penk1 encoded peptide, Met-enkephalin, showed an increase of Osx and Col1a1 mRNAs and enhanced nodule mineralization. Interestingly, primary osteoblasts isolated from Penk1-/- mice showed lower metabolic activity, ALP activity, and nodule mineralization, as well as a lower number of CFU-F compared to osteoblasts isolated from WT mice, suggesting that, unlike the transient inhibition, the chronic Penk1 deletion affects both osteoblast differentiation and activity. Taken together, these results highlight a role for Penk1 in the regulation of the response of the bone to mechanical unloading, potentially acting on osteoblast differentiation and activity in a cell-autonomous manner.


Assuntos
Regulação para Baixo , Encefalinas , Camundongos Knockout , Osteoblastos , Animais , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Encefalinas/metabolismo , Encefalinas/genética , Camundongos , Humanos , Masculino , Diferenciação Celular , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Camundongos Endogâmicos C57BL , Adulto
3.
Cell Cycle ; 22(8): 870-905, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36648057

RESUMO

Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.


Assuntos
Antineoplásicos , Neoplasias , Estresse Oxidativo , Processamento Pós-Transcricional do RNA , RNA , RNA/genética , RNA/metabolismo , Metilação/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Epigênese Genética/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Recidiva , Humanos , Animais , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Front Oncol ; 12: 983254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544705

RESUMO

Osteosarcoma is the most common primary bone malignancy. The crosstalk between osteosarcoma and the surrounding tumour microenvironment (TME) drives key events that lead to metastasization, one of the main obstacles for definitive cure of most malignancies. Extracellular vesicles (EVs), lipid bilayer nanoparticles used by cells for intercellular communication, are emerging as critical biological mediators that permit the interplay between neoplasms and the tumour microenvironment, modulating re-wiring of energy metabolism and redox homeostatic processes. We previously showed that EVs derived from the human osteosarcoma cells influence bone cells, including osteoblasts. We here investigated whether the opposite could also be true, studying how osteoblast-derived EVs (OB-EVs) could alter tumour phenotype, mitochondrial energy metabolism, redox status and oxidative damage in MNNG/HOS osteosarcoma cells.These were treated with EVs obtained from mouse primary osteoblasts, and the following endpoints were investigated: i) cell viability and proliferation; ii) apoptosis; iii) migration and invasive capacity; iv) stemness features; v) mitochondrial function and energy metabolism; vi) redox status, antioxidant capacity and oxidative molecular damage. OB-EVs decreased MNNG/HOS metabolic activity and viability, which however was not accompanied by impaired proliferation nor by increased apoptosis, with respect to control. In addition, OB-EV-treated cells exhibited a significant reduction of motility and in vitro invasion as compared to untreated cells. Although the antioxidant N-acetyl-L-cysteine reverted the cytotoxic effect of OB-EVs, no evidence of oxidative stress was observed in treated cells. However, the redox balance of glutathione was significantly shifted towards a pro-oxidant state, even though the major antioxidant enzymatic protection did not respond to the pro-oxidant challenge. We did not find strong evidence of mitochondrial involvement or major energy metabolic switches induced by OB-EVs, but a trend of reduction in seahorse assay basal respiration was observed, suggesting that OB-EVs could represent a mild metabolic challenge for osteosarcoma cells. In summary, our findings suggest that OB-EVs could serve as important means through which TME and osteosarcoma core cross-communicate. For the first time, we proved that OB-EVs reduced osteosarcoma cells' aggressiveness and viability through redox-dependent signalling pathways, even though mitochondrial dynamics and energy metabolism did not appear as processes critically needed to respond to OB-EVs.

5.
HardwareX ; 12: e00370, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36345434

RESUMO

Automated microscope slide stainers are usually very expensive and unless the laboratory performs heavy histological work it is difficult to justify buying a 2000-10000€ machine. As a result, histology and pathology labs around the world lose thousands of working hours for following procedures that could be easily automated. Herein, we propose a simple modification of an open-source 3D printer, the Creality Ender-3, into an automated microscope slide autostainer, the HistoEnder. The HistoEnder is cheap (less than 200€), modular, and easy to set up, with only two 3D-printed parts needed. Additionally, the 3D printer retains its full functionality, and it can be reverted back into 3D printing in less than 1 min. The g-code associated with the procedure is extremely simple, and can be written by anyone. The HistoEnder can also be used in chemistry and material science laboratories for automating surface modifications and dip coating.

6.
Cancer Drug Resist ; 5(3): 541-559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176757

RESUMO

Liquid biopsies are a powerful tool to non-invasively analyze tumor phenotype and progression as well as drug resistance. In the bone oncology field, liquid biopsies would be particularly important to develop, since standard biopsies can be very painful, dangerous (e.g., when found in proximity to the spinal cord), and hard to collect. In this review, we explore the recent advances in liquid biopsies in both primary (osteosarcoma and Ewing sarcoma) and secondary bone cancers (breast, prostate, and lung cancer-induced bone metastases), presenting their current role and highlighting their unexpressed potential, as well as the barriers limiting their possible adoption, including costs, scalability, reproducibility, and isolation methods. We discuss the use of circulating tumor cells, cell-free circulating tumor DNA, and extracellular vesicles for the purpose of improving diagnosis, prognosis, evaluation of therapy resistance, and driving therapy decisions in both primary and secondary bone malignancies.

7.
Biomedicines ; 10(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36009451

RESUMO

Current multimodal treatment of bone metastases is partially effective and often associated with side effects, and novel therapeutic options are needed. Acridine orange is a photosensitizing molecule that accumulates in acidic compartments. After photo- or radiodynamic activation (AO-PDT or AO-RDT), acridine orange can induce lysosomal-mediated cell death, and we explored AO-RDT as an acid-targeted anticancer therapy for bone metastases. We used osteotropic carcinoma cells and human osteoclasts to assess the extracellular acidification and invasiveness of cancer cells, acridine orange uptake and lysosomal pH/stability, and the AO-RDT cytotoxicity in vitro. We then used a xenograft model of bone metastasis to compare AO-RDT to another antiacid therapeutic strategy (omeprazole). Carcinoma cells showed extracellular acidification activity and tumor-derived acidosis enhanced cancer invasiveness. Furthermore, cancer cells accumulated acridine orange more than osteoclasts and were more sensitive to lysosomal death. In vivo, omeprazole did not reduce osteolysis, whereas AO-RDT promoted cancer cell necrosis and inhibited tumor-induced bone resorption, without affecting osteoclasts. In conclusion, AO-RDT was selectively toxic only for carcinoma cells and effective to impair both tumor expansion in bone and tumor-associated osteolysis. We therefore suggest the use of AO-RDT, in combination with the standard antiresorptive therapies, to reduce disease burden in bone metastasis.

8.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055145

RESUMO

Lipocalin 2 (Lcn2) is an adipokine involved in bone and energy metabolism. Its serum levels correlate with bone mechanical unloading and inflammation, two conditions representing hallmarks of Duchenne Muscular Dystrophy (DMD). Therefore, we investigated the role of Lcn2 in bone loss induced by muscle failure in the MDX mouse model of DMD. We found increased Lcn2 serum levels in MDX mice at 1, 3, 6, and 12 months of age. Consistently, Lcn2 mRNA was higher in MDX versus WT muscles. Immunohistochemistry showed Lcn2 expression in mononuclear cells between muscle fibres and in muscle fibres, thus confirming the gene expression results. We then ablated Lcn2 in MDX mice, breeding them with Lcn2-/- mice (MDXxLcn2-/-), resulting in a higher percentage of trabecular volume/total tissue volume compared to MDX mice, likely due to reduced bone resorption. Moreover, MDXxLcn2-/- mice presented with higher grip strength, increased intact muscle fibres, and reduced serum creatine kinase levels compared to MDX. Consistently, blocking Lcn2 by treating 2-month-old MDX mice with an anti-Lcn2 monoclonal antibody (Lcn2Ab) increased trabecular volume, while reducing osteoclast surface/bone surface compared to MDX mice treated with irrelevant IgG. Grip force was also increased, and diaphragm fibrosis was reduced by the Lcn2Ab. These results suggest that Lcn2 could be a possible therapeutic target to treat DMD-induced bone loss.


Assuntos
Lipocalina-2/sangue , Lipocalina-2/genética , Distrofia Muscular de Duchenne/patologia , Regulação para Cima , Animais , Diafragma/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/genética , Fenótipo
9.
J Cell Physiol ; 237(1): 551-565, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224151

RESUMO

Lipocalin 2 (LCN2) is an adipokine that accomplishes several functions in diverse organs. However, its importance in muscle and physical exercise is currently unknown. We observed that following acute high-intensity exercise ("Gran Sasso d'Italia" vertical run), LCN2 serum levels were increased. The Wnt pathway antagonist, DKK1, was also increased after the run, positively correlating with LCN2, and the same was found for the cytokine Interleukin 6. We, therefore, investigated the involvement of LCN2 in muscle physiology employing an Lcn2 global knockout (Lcn2-/- ) mouse model. Lcn2-/- mice presented with smaller muscle fibres but normal muscle performance (grip strength metre) and muscle weight. At variance with wild type (WT) mice, the inflammatory cytokine Interleukin 6 was undetectable in Lcn2-/- mice at all ages. Intriguingly, Lcn2-/- mice did not lose gastrocnemius and quadriceps muscle mass and muscle performance following hindlimb suspension, while at variance with WT, they lose soleus muscle mass. In vitro, LCN2 treatment reduced the myogenic differentiation of C2C12 and primary mouse myoblasts and influenced their gene expression. Treating myoblasts with LCN2 reduced myogenesis, suggesting that LCN2 may negatively affect muscle physiology when upregulated following high-intensity exercise.


Assuntos
Interleucina-6 , Lipocalina-2/metabolismo , Músculos , Animais , Expressão Gênica , Humanos , Interleucina-6/metabolismo , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206294

RESUMO

Osteoblasts, the cells that build up our skeleton, are remarkably versatile and important cells that need tight regulation in all the phases of their differentiation to guarantee proper skeletal development and homeostasis. Although we know many of the key pathways involved in osteoblast differentiation and signaling, it is becoming clearer and clearer that this is just the tip of the iceberg, and we are constantly discovering novel concepts in osteoblast physiology. In this review, we discuss well-established pathways of osteoblastic differentiation, i.e., the classical ones committing mesenchymal stromal cells to osteoblast, and then osteocytes as well as recently emerged players. In particular, we discuss micro (mi)RNAs, long non-coding (lnc)RNAs, circular (circ)RNAs, and extracellular vesicles, focusing on the mechanisms through which osteoblasts are regulated by these factors, and conversely, how they use extracellular vesicles to communicate with the surrounding microenvironment.


Assuntos
Diferenciação Celular , Osteoblastos/fisiologia , Transdução de Sinais , Animais , Vesículas Extracelulares , Humanos , MicroRNAs , Osteoblastos/metabolismo , RNA Longo não Codificante
11.
Bone ; 153: 116130, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34329816

RESUMO

Extracellular Vesicles (EVs) are becoming increasingly recognized as integral signaling vehicles in several types of cancers, including bone malignancies. However, the specific mechanisms by which EVs influence osteosarcoma progression have not been fully determined. We evaluated the effects of EVs derived from the human osteosarcoma cell line MNNG/HOS (MNNG/HOS-EVs) on bone resident cells. We found that MNNG/HOS-EVs are internalized by osteoblasts and osteoclasts in vitro, with potent inhibitory effects on osteoblast metabolic activity, cell density and alkaline phosphatase activity. Consistently, MNNG/HOS-EVs reduced the expression of cell cycle and pro-osteoblastogenic genes, whilst increasing transcriptional expression and protein release of pro-osteoclastogenic/inflammatory cytokines (RankL, Il1b, Il6 and Lcn2), pro-tumoral cytokines (CCL2,5,6,12 and CXCL1,2,5) and the metalloproteinase MMP3. MNNG/HOS-EVs did not induce osteoclast differentiation, while promoting in vitro and in vivo angiogenesis. Intriguingly, EVs derived from another osteosarcoma cell line (U2OS) reduced ALP activity but had no other effect on osteoblast phenotype. MNNG/HOS-EVs were also found to dramatically increase Serpin b2 expression in osteoblasts. To evaluate the significance of this finding, osteoblasts were forced to overexpress Serpin b2, which however did not affect osteoblast differentiation, while Il6 and Lcn2 mRNAs were up regulated. Overall, we shed light on the interactions of osteosarcoma EVs with the cells of the bone microenvironment, identifying key anti-osteoblastogenic, pro-inflammatory and pro-angiogenic factors that could contribute to osteosarcoma expansion.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Osteossarcoma , Linhagem Celular Tumoral , Humanos , Metilnitronitrosoguanidina , Microambiente Tumoral
12.
Bone Rep ; 14: 101059, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34026950

RESUMO

PURPOSE: Lipocalin 2 (LCN2) is an adipokine involved in many physiological functions, including bone metabolism. We previously demonstrated its implication in mouse models of mechanical unloading-induced osteoporosis and in a cohort of bed rest volunteers. We therefore aimed at studying its involvement in postmenopausal osteoporosis. METHODS: We measured serum LCN2 and correlated its levels to Dickkopf WNT Signaling Pathway Inhibitor 1 (DKK1), Tartrate Resistant Acid Phosphatase 5B (TRAcP5B), sclerostin, urinary N-terminal telopeptide of type I collagen (NTX), serum C-terminal telopeptide of type I collagen (CTX), parathyroid hormone and vitamin K by ELISA performed in a cohort of younger (50-65 years) and older (66-90 years) osteoporotic women in comparison to healthy subjects. A cohort of male healthy and osteoarthritic patients was also included. Sobel mediation analysis was used to test indirect associations among age, LCN2 and DKK1 or NTX. RESULTS: LCN2 levels were unchanged in osteoporotic and in osteoarthritis patients when compared to healthy subjects and did not correlate with BMD. However, serum LCN2 correlated with age in healthy women (R = 0.44; P = 0.003) and men (R = 0.5; P = 0.001) and serum concentrations of DKK1 (R = 0.47; P = 0.003) and urinary NTX (R = 0.34; P = 0.04). Sobel mediation analysis showed that LCN2 mediates an indirect relationship between age and DKK1 (P = 0.02), but not with NTX, in healthy subjects. CONCLUSIONS: Taken together, the results suggest a hitherto unknown association between LCN2, DKK1 and age in healthy individuals, but not in postmenopausal osteoporotic women.

13.
Dose Response ; 18(2): 1559325820931262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647498

RESUMO

Objective. We aimed to investigate the acute residual hormonal, biochemical, and neuromuscular responses to a single session of individualized whole-body vibration (WBV) while maintaining a half-squat position. Methods. Twenty male sport science students voluntarily participated in the present study and were randomly assigned to an individualized WBV group (with the acceleration load determined for each participant) or an isometric group (ISOM). A double-blind, controlled parallel study design with repeated measures was employed. Results. Testosterone and growth hormone increased significantly over time in the WBV group (P < .05 and P < .01, respectively; effect size [ES] ranged from 1.00 to 1.23), whereas cortisol increased over time in both groups (P < .01; ES ranged from 1.04 and 1.36). Interleukin-6 and creatine kinase increased significantly over time only in the WBV group (P < .05; ES = 1.07). The maximal voluntary contraction decreased significantly over time in the ISOM group (P = .019; ES = 0.42), whereas in the WBV group, the decrease did not reach a significant level (P = .05). The ratio of electromyographic activity and power decreased significantly over time in the WBV group (P < .01; ES ranged from 0.57 to 0.72). Conclusion. Individualized WBV increased serum hormonal concentrations, muscle damage, and inflammation to levels similar to those induced by resistance training and hypertrophy exercises.

14.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527062

RESUMO

Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias/patologia , Animais , Vasos Sanguíneos/patologia , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/patologia , Vesículas Extracelulares/patologia , Humanos , Neoplasias/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Hipóxia Tumoral , Microambiente Tumoral
15.
J Bone Miner Res ; 35(2): 396-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610048

RESUMO

Extracellular vesicles (EVs) are emerging as mediators of a range of pathological processes, including cancer. However, their role in bone metastases has been poorly explored. We investigated EV-mediated effects of osteotropic breast cancer cells (MDA-MB-231) on bone resident cells and endothelial cells. Pretreatment of osteoblasts with conditioned medium (CM) of MDA-MB-231 (MDA) cells promoted pro-osteoclastogenic and pro-angiogenic effects by osteoblast EVs (OB-EVs), as well as an increase of RANKL-positive OB-EVs. Moreover, when treating osteoblasts with MDA-EVs, we observed a reduction of their number, metabolic activity, and alkaline phosphatase (Alp) activity. MDA-EVs also reduced transcription of Cyclin D1 and of the osteoblast-differentiating genes, while enhancing the expression of the pro-osteoclastogenic factors Rankl, Lcn2, Il1b, and Il6. Interestingly, a cytokine array on CM from osteoblasts treated with MDA-EVs showed an increase of the cytokines CCL3, CXCL2, Reg3G, and VEGF, while OPG and WISP1 were downregulated. MDA-EVs contained mRNAs of genes involved in bone metabolism, as well as cytokines, including PDGF-BB, CCL3, CCL27, VEGF, and Angiopoietin 2. In line with this profile, MDA-EVs increased osteoclastogenesis and in vivo angiogenesis. Finally, intraperitoneal injection of MDA-EVs in mice revealed their ability to reach the bone microenvironment and be integrated by osteoblasts and osteoclasts. In conclusion, we showed a role for osteoblast-derived EVs and tumor cell-derived EVs in the deregulation of bone and endothelial cell physiology, thus fueling the vicious cycle induced by bone tumors. © 2019 American Society for Bone and Mineral Research.


Assuntos
Vesículas Extracelulares , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Camundongos , Osteoblastos , Osteoclastos , Osteócitos , Microambiente Tumoral
16.
J Sci Med Sport ; 22(11): 1219-1225, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31395468

RESUMO

OBJECTIVES: To investigate the functional effect of genetic polymorphisms of the inflammatory pathway on structural extracellular matrix components (ECM) and the susceptibility to an anterior cruciate ligament (ACL) injury. DESIGN: Laboratory study, case-control study. METHODS: Eight healthy participants were genotyped for interleukin (IL)1B rs16944 C>T and IL6 rs1800795 G>C and classified into genetic risk profile groups. Differences in type I collagen (COL1A1), type V collagen (COL5A1), biglycan (BGN) and decorin (DCN) gene expression were measured in fibroblasts either unstimulated or following IL-1ß, IL-6 or tumor necrosis factor (TNF)-α treatment. Moreover, a genetic association study was conducted in: (i) a Swedish cohort comprised of 116 asymptomatic controls (CON) and 79 ACL ruptures and (ii) a South African cohort of 100 CONs and 98 ACLs. Participants were genotyped for COL5A1 rs12722 C>T, IL1B rs16944 C>T, IL6 rs1800795 G>C and IL6R rs2228145 G>C. RESULTS: IL1B high-risk fibroblasts had decreased BGN (p=0.020) and COL5A1 (p=0.012) levels after IL-1ß stimulation and expressed less COL5A1 (p=0.042) following TNF-α treatment. Similarly, unstimulated IL6 high-risk fibroblasts had lower COL5A1 (p=0.012) levels than IL6 low-risk fibroblasts. In the genetic association study, the COL5A1-IL1B-IL6 T-C-G (p=0.034, Haplo-score 2.1) and the COL5A1-IL1B-IL6R T-C-A (p=0.044, Haplo-score: 2.0) combinations were associated with an increased susceptibility to ACL injury in the Swedish cohort when only male participants were evaluated. CONCLUSIONS: This study shows that polymorphisms within genes of the inflammatory pathway modulate the expression of structural and fibril-associated ECM components in a genetic risk depended manner, contributing to an increased susceptibility to ACL injuries.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Matriz Extracelular/genética , Interleucina-1beta/genética , Interleucina-6/genética , Adulto , Biglicano/genética , Estudos de Casos e Controles , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo V/genética , Decorina/genética , Feminino , Fibroblastos , Estudos de Associação Genética , Genótipo , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Fatores de Risco , África do Sul , Suécia , Adulto Jovem
17.
EBioMedicine ; 44: 452-466, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31151929

RESUMO

BACKGROUND: Cancer-associated bone disease is a serious complication in bone sarcomas and metastatic carcinomas of breast and prostate origin. Monoacylglycerol lipase (MAGL) is an enzyme of the endocannabinoid system, and is responsible for the degradation of the most abundant endocannabinoid in bone, 2-arachidonoyl glycerol (2AG). METHODS: The effects of the verified MAGL inhibitor on bone remodelling were assessed in healthy mice and in mouse models of bone disease caused by prostate and breast cancers and osteosarcoma. FINDINGS: JZL184 reduced osteolytic bone metastasis in mouse models of breast and prostate cancers, and inhibited skeletal tumour growth, metastasis and the formation of ectopic bone in models of osteosarcoma. Additionally, JZL184 suppressed cachexia and prolonged survival in mice injected with metastatic osteosarcoma and osteotropic cancer cells. Functional and histological analysis revealed that the osteoprotective action of JZL184 in cancer models is predominately due to inhibition of tumour growth and metastasis. In the absence of cancer, however, exposure to JZL184 exerts a paradoxical reduction of bone volume via an effect that is mediated by both Cnr1 and Cnr2 cannabinoid receptors. INTERPRETATION: MAGL inhibitors such as JZL184, or its novel analogues, may be of value in the treatment of bone disease caused by primary bone cancer and bone metastasis, however, activation of the skeletal endocannabinoid system may limit their usefulness as osteoprotective agents.


Assuntos
Benzodioxóis/farmacologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Comunicação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteólise/tratamento farmacológico , Osteólise/etiologia , Osteólise/metabolismo , Osteólise/patologia , Receptores de Canabinoides/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-31057482

RESUMO

The term osteoimmunology was coined many years ago to describe the research field that deals with the cross-regulation between bone cells and the immune system. As a matter of fact, many factors that are classically considered immune-related, such as InterLeukins (i.e., IL-6, -11, -17, and -23), Tumor Necrosis Factor (TNF)-α, Receptor-Activator of Nuclear factor Kappa B (RANK), and its Ligand (RANKL), Nuclear Factor of Activated T-cell, cytoplasmatic-1 (NFATc1), and others have all been found to be crucial in osteoclast and osteoblast biology. Conversely, bone cells, which we used to think would only regulate each other and take care of remodeling bone, actually regulate immune cells, by creating the so-called "endosteal niche." Both osteoblasts and osteoclasts participate to this niche, either by favoring engraftment, or mobilization of Hematopoietic Stem Cells (HSCs). In this review, we will describe the main milestones at the base of the osteoimmunology and present the key cellular players of the bone-immune system cross-talk, including HSCs, osteoblasts, osteoclasts, bone marrow macrophages, osteomacs, T- and B-lymphocytes, dendritic cells, and neutrophils. We will also briefly describe some pathological conditions in which the bone-immune system cross-talk plays a crucial role, with the final aim to portray the state of the art in the mechanisms regulating the bone-immune system interplay, and some of the latest molecular players in the field. This is important to encourage investigation in this field, to identify new targets in the treatment of bone and immune diseases.

19.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641973

RESUMO

Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.


Assuntos
Biomarcadores/metabolismo , Neoplasias Ósseas/secundário , Dor do Câncer/metabolismo , Trifosfato de Adenosina/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Dor do Câncer/terapia , Quimiocinas/metabolismo , Feminino , Humanos , Interleucinas/metabolismo , Masculino , Fatores de Crescimento Neural/metabolismo , Manejo da Dor , Prótons
20.
J Bone Miner Res ; 33(6): 1141-1153, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444358

RESUMO

Lipocalin 2 (Lcn2) is an adipokine that carries out a variety of functions in diverse organs. We investigated the bone phenotype and the energy metabolism of Lcn2 globally deleted mice (Lcn2-/- ) at different ages. Lcn2-/- mice were largely osteopenic, exhibiting lower trabecular bone volume, lesser trabecular number, and higher trabecular separation when compared to wild-type (WT) mice. Lcn2-/- mice showed a lower osteoblast number and surface over bone surface, and subsequently a significantly lower bone formation rate, while osteoclast variables were unremarkable. Surprisingly, we found no difference in alkaline phosphatase (ALP) activity or in nodule mineralization in Lcn2-/- calvaria osteoblast cultures, while less ALP-positive colonies were obtained from freshly isolated Lcn2-/- bone marrow stromal cells, suggesting a nonautonomous osteoblast response to Lcn2 ablation. Given that Lcn2-/- mice showed higher body weight and hyperphagia, we investigated whether their osteoblast impairment could be due to altered energy metabolism. Lcn2-/- mice showed lower fasted glycemia and hyperinsulinemia. Consistently, glucose tolerance was significantly higher in Lcn2-/- compared to WT mice, while insulin tolerance was similar. Lcn2-/- mice also exhibited polyuria, glycosuria, proteinuria, and renal cortex vacuolization, suggesting a kidney contribution to their phenotype. Interestingly, the expression of the glucose transporter protein type 1, that conveys glucose into the osteoblasts and is essential for osteogenesis, was significantly lower in the Lcn2-/- bone, possibly explaining the in vivo osteoblast impairment induced by the global Lcn2 ablation. Taken together, these results unveil an important role of Lcn2 in bone metabolism, highlighting a link with glucose metabolism that is more complex than expected from the current knowledge. © 2018 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Osso e Ossos/metabolismo , Metabolismo Energético , Lipocalina-2/metabolismo , Adiposidade , Animais , Biomarcadores/metabolismo , Peso Corporal , Doenças Ósseas Metabólicas/patologia , Remodelação Óssea , Transportador de Glucose Tipo 1/metabolismo , Gônadas/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...