Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 22(9): 1723-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23068091

RESUMO

Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia-commonly observed when culturing cells in regular plasticware-have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2 concentrations. A result of current culture standards is that a high percentage of islet preparations are never transplanted because of cell death and loss of function in the 24-48 h postisolation. Here, we describe a new culture system designed to provide quasiphysiological oxygenation to islets in culture. The use of dishes where islets rest atop a perfluorocarbon (PFC)-based membrane, coupled with a careful adjustment of environmental O2 concentration to target the islet physiological pO2 range, resulted in dramatic gains in viability and function. These observations underline the importance of approximating culture conditions as closely as possible to those of the native microenvironment, and fill a widely acknowledged gap in our ability to preserve islet functionality in vitro. As stem cell-derived insulin-producing cells are likely to suffer from the same limitations as those observed in real islets, our findings are especially timely in the context of current efforts to define renewable sources for transplantation.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Fluorocarbonos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Oxigênio/administração & dosagem , Oxigênio/metabolismo , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Nus
2.
Cell Transplant ; 16(10): 1039-48, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18351020

RESUMO

An important challenge in pancreatic islet transplantation in association with type 1 diabetes is to define automatic high-throughput assays for evaluation of human islet function. The physiological techniques presently used are amenable to small-scale experimental samples and produce descriptive results. The postgenomic era provides an opportunity to analyze biological processes on a larger scale, but the transition to high-throughput technologies is still a challenge. As a first step to implement high-throughput assays for the study of human islet function, we have developed two methodologies: multiple automated perifusion to determine islet hormone secretion and high-throughput kinetic imaging to examine islet cellular responses. Both technologies use fully automated devices that allow performing simultaneous experiments on multiple islet preparations. Our results illustrate that these technologies can be applied to study the functional status and explore the pharmacological profiles of islet cells. These methodologies will enable functional characterization of human islet preparations before transplantation and thereby provide the basis for the establishment of predictive tests for beta-cell potency.


Assuntos
Ilhotas Pancreáticas/fisiologia , Animais , Autoanálise , Cálcio/análise , Diabetes Mellitus Tipo 2/fisiopatologia , Glucagon/metabolismo , Glucose/análise , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Doadores Vivos , Macaca fascicularis , Hormônios Pancreáticos/metabolismo , Perfusão , Especificidade da Espécie
3.
Cell Transplant ; 16(10): 1039-1048, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28866924

RESUMO

An important challenge in pancreatic islet transplantation in association with type 1 diabetes is to define automatic high-throughput assays for evaluation of human islet function. The physiological techniques presently used are amenable to small-scale experimental samples and produce descriptive results. The postgenomic era provides an opportunity to analyze biological processes on a larger scale, but the transition to high-throughput technologies is still a challenge. As a first step to implement high-throughput assays for the study of human islet function, we have developed two methodologies: multiple automated perifusion to determine islet hormone secretion and high-throughput kinetic imaging to examine islet cellular responses. Both technologies use fully automated devices that allow performing simultaneous experiments on multiple islet preparations. Our results illustrate that these technologies can be applied to study the functional status and explore the pharmacological profiles of islet cells. These methodologies will enable functional characterization of human islet preparations before transplantation and thereby provide the basis for the establishment of predictive tests for ß-cell potency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...