Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 101(12): 2088-2097, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677387

RESUMO

Grapevine leafroll disease (GLD) is a complex associated with one or more virus species belonging to the family Closteroviridae. The majority of viruses in this complex are vectored by one or more species of mealybugs (Pseudococcidae) and/or scale insects (Coccidae). Grape-growing regions of British Columbia (BC), including Okanagan, Similkameen, and Fraser valleys and Kamloops (BC central interior), Vancouver, and Gulf islands, were surveyed during the 2014 and 2015 growing seasons for the presence of four major grapevine leafroll-associated viruses, including Grapevine leafroll-associated virus 1 (GLRaV-1), GLRaV-2, GLRaV-3, and GLRaV-4. In total, 3,056 composite five-vine samples were collected from 153 Vitis vinifera and three interspecific hybrid vineyard blocks. The results showed GLRaV-3 to be the most widespread, occurring in 16.7% of the composite samples, followed by GLRaV-4 (3.9%), GLRaV-1 (3.8%), and GLRaV-2 (3.0%). Mixed infections of two or more GLRaVs were found in 4.1% of the total samples. The relative incidence of GLRaVs differed among regions and vineyard blocks of a different age. Characterization of partial CO1 region from a total of 241 insect specimens revealed the presence of Pseudococcus maritimus, Parthenolecanium corni, and other Pulvinaria sp. in BC vineyards. Spatial patterns of GLRaV-3 infected grapevines in three vineyard blocks from three different regions in the Okanagan Valley showed variable degrees of increase in disease spread ranging from 0 to 19.4% over three growing seasons. Regional differences in the relative incidence and spread of GLD underline the need for region-based management programs for BC vineyards.


Assuntos
Closteroviridae , Variação Genética , Doenças das Plantas , Vitis , Animais , Colúmbia Britânica , Closteroviridae/genética , Hemípteros/genética , Hemípteros/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vitis/virologia
2.
Plant Dis ; 98(1): 163, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30708599

RESUMO

In the Dominican Republic, green bell pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.) are widely cultivated under protected greenhouse conditions as high value commercial crops for export. For the past 2 to 3 years, pepper and tomato have been observed in protected crop facilities in Jarabacoa and Constanza in the North Region with chlorotic and necrotic spots and rings on leaves, petioles, and stems, leaf bronzing, and tip necrosis. Fruits on symptomatic pepper and tomato plants showed concentric rings, irregular chlorotic blotches and deformation, and uneven maturation and development. Incidence on pepper and tomato was 20 to 100% and 5 to 20%, respectively. In initial tests, leaves and fruits from each of 20 symptomatic tomato and pepper plants from several greenhouse facilities were reactive in Tomato spotted wilt virus (TSWV; genus Tospovirus, family Bunyaviridae) immunostrip assays (Agdia, Inc., Elkhart, IN). Since these immunostrips are known to react with other tospoviruses, such as Tomato chlorotic spot virus (TCSV) and Groundnut ring spot virus, additional molecular diagnostic assays were conducted. Leaf and fruit samples from symptomatic plants were imprinted on nitrocellulose membrane (NCM) (2), air-dried, and sent to Washington State University for confirmatory tests. Viral nucleic acids were eluted from NCM discs (1) and subjected to reverse transcription (RT)-PCR using primers gL3637 (CCTTTAACAGTDGAAACAT) and gL4435 (CATDGCRCAAGARTGRTARACAGA) designed to amplify a portion of the L RNA segment of several tospoviruses (3). A single DNA product of ~800 bp was amplified from all samples. Amplicons from two tomato (leaf and fruit) and one pepper fruit samples were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced in both orientations. Sequence analyses of these clones (GenBank Accession Nos. KF 219673 to 75) showed 100% nucleotide sequence identity among themselves and 97% identity with corresponding L RNA sequences of pepper isolates of TSWV from Taiwan (HM180088) and South Korea (HM581940), 94 to 95% with tomato isolates of TSWV from South Korea (HM581934) and Hawaii (AY070218), and 89% with a tomato isolate from Indonesia (FJ177301). These results further confirm the presence of TSWV in symptomatic tomato and pepper plants. A comparison of TSWV sequences from the Dominican Republic with TSWV isolates from the United States and other countries in the Caribbean region could not be made due to the absence of corresponding sequences of the L-RNA of the virus from these countries in GenBank. TSWV-positive samples were negative for TCSV in RT-PCR, indicating the absence of this tospovirus that has been reported in the Caribbean region (data not shown). To our knowledge, this is the first confirmed report of TSWV in tomatoes and peppers in the Dominican Republic. The presence of vector thrips, Frankliniella occidentalis, on symptomatic plants was also confirmed, suggesting a role in the spread of TSWV under greenhouse conditions. Recent surveys identified some greenhouses with 100% symptomatic peppers. The presence of TSWV in tomato and pepper has important implications for the domestic and export vegetable industry in the Dominican Republic because of the broad host range of the virus (4). It is critical for commercial producers to monitor TSWV and deploy appropriate management strategies to limit virus spread. References: (1) O. J. Alabi et al. J. Virol. Methods 154:111, 2008. (2) P.-G. S. Chang et al. J. Virol. Methods 171:345, 2011. (3) F. H. Chu et al. Phytopathology 91:361, 2001. (4) G. Parrella et al. J. Plant Pathol. 85:227, 2003.

3.
Plant Dis ; 97(6): 850, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30722619

RESUMO

Basil (Ocimum basilicum L.), a native of India belonging to the Lamiaceae family, is an aromatic herb with distinctive aroma, and several commercial varieties are used extensively for culinary and ornamental purposes. During the summer of 2011 and 2012, potted plants of basil in a commercial greenhouse in the Richland-Kennewick area of Washington State were observed showing foliar symptoms consisting of chlorotic spots, ring spots, leaf distortion, and stem necrosis. In initial tests, extracts of symptomatic leaves were positive for Impatiens necrotic spot virus (INSV; genus Tospovirus, family Bunyaviridae), when tested with INSV immnunostrips (Agdia, Inc., Elkhart, IN). These samples were negative with immunostrips specific to Tomato spotted wilt virus (genus Tospovirus) and group-specific potyviruses. The virus from symptomatic leaves of basil was transmitted by leaf rub inoculation to Nicotiana benthamiana and Emilia sonchifolia, where it produced necrosis on inoculated leaves followed by systemic necrosis in the former and chlorotic spots and mosaic mottling in newly developed leaves in the latter. Symptomatic leaves from both host plants tested positive with INSV, but not with TSWV, immunostrips. For additional confirmation of INSV, total RNA was extracted from symptomatic leaves of basil using RNeasy Plant Minikit (Qiagen, Inc., Valencia, CA) and used for reverse transcription (RT)-PCR amplification of the nucleocapsid (N) gene using forward (5'-AGCTTAAATCAATAGTAGCA-3') and reverse (5'-AGCTTCCTCAAGAATAGGCA-3') primers. RT was carried out at 52°C for 60 min followed by denaturation at 94°C for 3 min. Subsequently, 35 cycles of PCR was carried out with each cycle consisting of 94°C for 1 min, 58°C for 45 s, and 72°C for 1 min, followed by a final extension step at 72°C for 10 min. The amplicons of about 610 nt obtained from RT-PCR were cloned into pTOPO2.1 vector (Invitrogen Corporation, Carlsbad, CA) and three independent clones were sequenced in both directions. Sequence analyses of these clones (GenBank Accession No. KC218475) showed 100% nucleotide sequence identity among themselves and 99% nucleotide sequence identity with INSV isolates from the United States (DQ523598, JX138531, and D00914) and a basil isolate (JQ724132) from Austria. These results further confirm the presence of INSV in symptomatic leaves of basil. Previously, basil has been reported to be naturally infected with TSWV in the United States (3) and INSV in Austria (2). Therefore, this study represents the first confirmed report of the virus in basil in the United States. No species of thrips vector was observed on the affected basil plants. The discovery of INSV in basil has important implications for the nursery industry due to the broad host range of the virus (1); stock plants may serve as a source of inoculum in production areas and infected plants could be distributed to homeowners. It is important for commercial nurseries to monitor for INSV to identify infected mother plants to prevent virus spread. Since more than 31 viruses belonging to 13 different genera have been reported in basil ( http://pvo.bio-mirror.cn/famly073.htm#Ocimumbasilicum ), further studies are in progress to determine if the observed symptoms on basil are only due to single infection of INSV. References: (1) M. Daughtrey et al. Plant Dis. 81:1220, 1997. (2). S. Grausgruber-Gröger. New Dis. Rep. 26:12, 2012. (3) G. E. Holcomb et al. Plant Dis. 83:966.

4.
Environ Entomol ; 42(6): 1292-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24468559

RESUMO

The grape mealybug, Pseudococcus maritimus (Ehrhorn), and European fruit lecanium scale, Parthenolecanium corni (Bouché), are the predominant species of Coccoidea in Washington State vineyards. The grape mealybug has been established as a vector of Grapevine leafroll-associated virus 3 (GLRaV-3) between wine grape (Vitis vinifera L.) cultivars, elevating its pest status. The objective of this study was to determine if GLRaV-3 could be transmitted between Vitis x labruscana L. and V. vinifera by the grape mealybug and scale insects. Three transmission experiments were conducted with regard to direction; from V. vinifera to V. x labruscana L., from V. x labruscana L. to V. x labruscana L., and from V. x labruscana L. to V. vinifera. Each experiment was replicated 15 times for each vector species. Crawlers (first-instars) of each vector species were allowed 1-wk acquisition and inoculation access periods. The identities of viral and vector species were confirmed by reverse transcription-polymerase chain reaction, cloning, and sequencing of species-specific DNA fragments. GLRaV-3 was successfully transmitted by both species in all experiments, although Ps. maritimus was a more efficient vector under our experimental conditions. To the best of our knowledge, this study represents the first documented evidence of interspecific transmission of GLRaV-3 between two disparate Vitis species. It also highlights the potential role of V. x labruscana L. in the epidemiology of grapevine leafroll disease as a symptomless source of GLRaV-3 inoculum.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Vitis/virologia , Animais , Sequência de Bases , Hemípteros/genética , Insetos Vetores/genética , Dados de Sequência Molecular , Doenças das Plantas , Vitis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...