Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 351: 141212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246500

RESUMO

This research delves into fabricating a CuO/Fe2O3/ZnO (CFZ) ternary composite photocatalyst, employing grape extract for its eco-conscious synthesis. The method intricately integrates copper acetate, ferric nitrate, and zinc acetate as precursor compounds, harmonizing them with grape extract serving as a green reducing agent. Meticulous microwave treatment and controlled calcination orchestrate the nuanced formation of the desired composite material. The extensive characterization, involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDXS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) spectroscopy, unveils an array of favorable physical, chemical, and optical attributes conducive to proficient photocatalysis. Notably, CFZ-10mc showcases a narrower bandgap of 1.91 eV, which is pivotal for bolstering electron-hole separation, thereby enhancing its photocatalytic efficacy. Assessment of CFZ's performance in degrading Rhodamine B (RhB) under UV irradiation highlights an impressive 88.8% degradation efficiency within 120 min, accompanied by a kinetic rate constant of 1.81 × 10-2 min-1. Deliberation upon crucial parameters, including photocatalyst dosage, initial RhB pH, and reactor energy consumption, introduces the electrical energy per order (EEO) as a notable efficiency metric. CFZ manifests a substantial reduction in operational costs, estimated to be 18.10 times lower than conventional photolysis, signifying an EEO value of 509.17 kWh m-3 order-1. Optimal operational conditions propose a photocatalyst content of 1.5 g L-1 and an initial RhB pH of 7, fostering the prevalence of the primary active species, •OH. These findings illuminate CFZ's potential in mitigating organic pollutants, underlining its pivotal role in sustainable water remediation. Additionally, practical implementation guidelines for leveraging CFZ's capabilities in real-world applications are presented with care and consideration.


Assuntos
Poluentes Ambientais , Vitis , Óxido de Zinco , Fotólise , Óxido de Zinco/química , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise
2.
Mikrochim Acta ; 190(6): 213, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171641

RESUMO

A cloth-based analytical device combined with electrochemiluminescence detection (CAD-ECL) was described for rapid determination  of histamine (HA). The CAD device was produced by screen-printing a conductive carbon ink onto a patterned hydrophobic electrochemical microfluidic chamber to fabricate the three-carbon electrode system on a single hydrophilic cloth. The introduction of carbon nanodots linked to chitosan on the working carbon electrode surface enhanced the catalytic performance and overcame the resistance of the cotton fiber material. On this basis, the enhancement of the electrochemiluminescence (ECL) signal of the tris(2,2'-bipyridyl) ruthenium(II) complex, caused by HA, was observed in a phosphate buffer solution at pH 7.6. The proposed CAD-ECL sensor was successfully applied to the quantification of HA in fish and fishery samples with good linearity between ECL intensity and the logarithm of HA concentration in the range 1.0 to 1000.0 µg L-1 with a low detection limit of 0.82 µg L-1.


Assuntos
Pesqueiros , Histamina , Animais , Têxteis , Carbono/química , Dispositivos Lab-On-A-Chip
3.
Mikrochim Acta ; 190(4): 145, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943510

RESUMO

The design and fabrication of a simple 3D-printed platform with embedded electrochemiluminescence (ECL) detection for sibutramine determination is described. The microfluidic platform was fabricated by the fused deposition 3D-printing technique with polylactic acid filament, facilitated by computer-aided design (CAD). A three-electrode system was integrated into the device using graphene carbon paste as a working electrode, Ag/AgCl wire as a reference, and a graphite rod as a counter electrode. A further modification was carried out by applying bimetallic Au-Pt nanoparticle-supported multi-walled carbon nanotubes (MWCNT-Au-Pt) on the working electrode surface to enhance the electrocatalytic performance by exploiting the unique properties of nanomaterials. The analytical feasibility of the CAD-ECL sensor was tested through its application for the determination of sibutramine in dietary supplements. Under the optimized conditions, based on the enhancing effect of luminol emission, the device exhibited a linear calibration curve of the logarithmic sibutramine concentration versus ECL intensity in the range 5 × 10-3 to 1 ng mL-1. The limit of detection was 3 pg mL-1 with a relative standard deviation of 1.7% (n = 15). The 3D-printed prototype can be successfully applied to a small-scale analysis in a simple and cost-effective approach.


Assuntos
Grafite , Nanotubos de Carbono , Fotometria , Dispositivos Lab-On-A-Chip , Suplementos Nutricionais
4.
Food Chem ; 386: 132786, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35344727

RESUMO

The fabrication of a cloth-based analytical device combined with electrochemiluminescence detection was established for the rapid determination of salbutamol in pork samples. A hand-coloring method to pattern the hydrophobic chamber was employed, and a three-carbon electrode system was subsequently screen printed onto the patterned cotton chamber. Further modifications of the working electrode surface were conducted using platinum nanoparticles and chitosan solution. The salbutamol enhanced the electrochemiluminescence signal of tris(2,2'-bipyridyl)ruthenium(II) complex in the Britton-Robinson buffer of pH 9.5 and the potential quantitative assay for SAL detection was exhibited. The proposed sensor illustrated a linear calibration curve of the logarithmic SAL concentration in the range of 5 × 10-2 to 5 × 104 µg L-1 (r2 > 0.996). A limit of detection of 6.8 ng L-1 was observed. The CAD-ECL sensor was successfully applied for the determination of salbutamol residuals in pork samples. The method validation was performed using the LC-MS method.


Assuntos
Nanopartículas Metálicas , Carne de Porco , Carne Vermelha , Albuterol , Animais , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Platina , Suínos
5.
Food Chem ; 366: 130590, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311230

RESUMO

A paper-based electrochemiluminescence device (µPAD-ECL) for the estimation of trimethylamine (TMA) concentration in fish was developed using tris(2,2'-bipyridyl)ruthenium(II) complex coupled with water soluble thioglycolic acid-capped CdSe quantum dots on the inkjet-printed paper-based device. The quenching effect of tertiary amines on the ECL intensity was found to be sensitive and concentration dependent. This effect allows the measurement of TMA at low concentrations. Under the optimal conditions, the linear concentration range was exhibited from 1 × 10-12 to 1 × 10-7 M and a detection limit of 2.09 × 10-13 M, with relative standard deviation of 1.97 %. The applicability of µPAD-ECL is demonstrated by the rapid estimation of trimethylamine concentration in fish tissue, and could be used as a method for screening the total amount of tertiary amines in fishery products in remote communities. The results obtained using the paper-based devices agreed well with those obtained applying high performance liquid chromatography with benzoyl derivatization, at a confidence level of 95%.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Animais , Medições Luminescentes , Metilaminas , Compostos de Selênio , Tioglicolatos
6.
Materials (Basel) ; 9(10)2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28773930

RESUMO

Crystalline TiO2 has shown its great photocatalytic properties in bacterial inactivation. This work presents a design fabrication of low-cost, layered TiO2 films assembled reactors and a study of their performance for a better understanding to elucidate the photocatalytic effect on inactivation of E. coli in water. The ability to reduce the number of bacteria in water samples for the layered TiO2 composing reactors has been investigated as a function of time, while varying the parameters of light sources, initial concentration of bacteria, and ratios of TiO2 film area and volume of water. Herein, the layered TiO2 films have been fabricated on the glass plates by thermal spray coating prior to screen printing, allowing a good adhesion of the films. Surface topology and crystallographic phase of TiO2 for the screen-printed active layer have been characterized, resulting in the ratio of anatase:rutile being 80:20. Under exposure to sunlight and a given condition employed in this study, the optimized film area:water volume of 1:2.62 has shown a significant ability to reduce the E. coli cells in water samples. The ratio of surface area of photocatalytic active base to volume of water medium is believed to play a predominant role facilitating the cells inactivation. The kinetic rate of inactivation and its behavior are also described in terms of adsorption of reaction species at different contact times.

7.
Biosens Bioelectron ; 66: 231-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437357

RESUMO

This paper reports a new approach to enhance the electrogenerated chemiluminescence (ECL) of the tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) system using resonance energy transfer with l-cysteine-capped cadmium telluride quantum dots (CdTe-QDs) in aqueous solution. The oxidative peak signal of Ru(bpy)3(2+) occurred at a voltage of 1.10V when the potential was cycled between 0.4 and 1.6V using cyclic voltammetry with a carbon screen-printed electrode (SPE) in a 0.11M phosphate buffer at pH 7.50. The l-cysteine-capped CdTe-QDs were synthesized and added into the solution of Ru(bpy)3(2+) to magnify the ECL signal. The ECL emission signal was investigated and the extreme enhancement of the ECL intensity was achieved due to the energy transfer by the l-cysteine-capped CdTe-QDs. It was found that the induced ECL from the Ru(bpy)3(2+) CdTe-QDs system was inhibited by the presence of selected nitrofurans. This quenching effect of nitrofuran antibiotics on the anodic ECL of Ru(bpy)3(2+) CdTe-QDs was found to be selective and concentration dependent and was observed to have a linear relationship over the concentration range 10-100×10(-6)M. The detection limits were found to be 0.40, 0.73 and 0.60µM for furaltadone (FTD), furazolidone (FZD) and nitrofurantoin (NFT). In addition, the proposed ECL method was successfully applied to detect the total residuals of selected nitrofuran residues in animal feed samples with satisfactory results.


Assuntos
Antibacterianos/isolamento & purificação , Técnicas Biossensoriais/métodos , Nitrofuranos/isolamento & purificação , Animais , Cisteína/química , Eletroquímica/métodos , Análise de Alimentos , Luminescência , Compostos Organometálicos , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...