Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2306554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919862

RESUMO

Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.

2.
Ultramicroscopy ; 253: 113819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37549583

RESUMO

Photoemission electron microscopy (PEEM) is a unique and powerful tool for studying the electronic properties of materials and surfaces. However, it requires intense and well-controlled light sources with photon energies ranging from the UV to soft X-rays for achieving high spatial resolution and image contrast. Traditionally, many PEEMs were installed at synchrotron light sources to access intense and tunable soft X-rays. More recently, the maturation of solid-state lasers has opened a new avenue for laboratory-based PEEMs using laser-based UV light at lower photon energies. Here, we report on the characteristics of a laser-based UV light source that was recently integrated with a PEEM instrument. The system consists of a high repetition rate, tunable wavelength laser coupled to a harmonics generation module, which generates deep-UV radiation from 192 nm to 210 nm. We comment on the spectral characteristics and overall laser system stability, as well as on the effects of space charge within the PEEM microscope at high UV laser fluxes. Further, we show an example of imaging on gallium nitride, where the higher UV photon energy and flux of the laser provides considerably improved image quality, compared to a conventional light source. These results demonstrate the capabilities of laser-based UV light sources for advancing laboratory-based PEEMs.

3.
Mater Horiz ; 9(1): 271-280, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34679148

RESUMO

The charge-transfer (CT) state arising as a hybrid electronic state at the interface between charge donor and charge acceptor molecular units is important to a wide variety of physical processes in organic semiconductor devices. The exact nature of this state depends heavily on the nature and co-facial overlap between the donor and acceptor; however, altering this overlap is usually accompanied by extensive confounding variations in properties due to extrinsic factors, such as microstructure. As a consequence, establishing reliable relationships between donor/acceptor molecular structures, their molecular overlap, degree of charge transfer and physical properties, is challenging. Herein, we examine the electronic structure of a polymorphic system based on the donor dibenzotetrathiafulvalene (DBTTF) and the acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) in the form of high-quality single crystals varying in the donor-acceptor overlap. Using angle-resolved photoemission spectroscopy, we resolve the highest occupied molecular orbital states of the CT crystals. Analysis based on field-effect transistors allows us to probe the sub-gap states impacting hole and electron transport. Our results expand the understanding on the impact of donor and acceptor interactions on electronic structure and charge transport.

5.
ACS Nano ; 12(10): 10045-10060, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30247875

RESUMO

Colloidal-based solution syntheses offer a scalable and cost-efficient means of producing 2D nanomaterials in high yield. While much progress has been made toward the controlled and tailorable synthesis of semiconductor nanocrystals in solution, it remains a substantial challenge to fully characterize the products' inherent electronic transport properties. This is often due to their irregular morphology or small dimensions, which demand the formation of colloidal assemblies or films as a prerequisite to performing electrical measurements. Here, we report the synthesis of nearly monodisperse 2D colloidal nanocrystals of semiconductor SnS and a thorough investigation of the intrinsic electronic transport properties of single crystals. We utilize a combination of multipoint contact probe measurements and ultrafast terahertz spectroscopy to determine the carrier concentration, carrier mobility, conductivity/resistivity, and majority carrier type of individual colloidal semiconductor nanocrystals. Employing this metrological approach, we compare the electronic properties extracted for distinct morphologies of 2D SnS and relate them to literature values. Our results indicate that the electronic transport of colloidal semiconductors may be tuned through prudent selection of the synthetic conditions. We find that these properties compare favorably to SnS grown using vapor deposition techniques, illustrating that colloidal solution synthesis is a promising route to scalable production of nanoscale 2D materials.

6.
Adv Mater ; : e1802991, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30059169

RESUMO

Developing processes to controllably dope transition-metal dichalcogenides (TMDs) is critical for optical and electrical applications. Here, molecular reductants and oxidants are introduced onto monolayer TMDs, specifically MoS2 , WS2 , MoSe2 , and WSe2 . Doping is achieved by exposing the TMD surface to solutions of pentamethylrhodocene dimer as the reductant (n-dopant) and "Magic Blue," [N(C6 H4 -p-Br)3 ]SbCl6 , as the oxidant (p-dopant). Current-voltage characteristics of field-effect transistors show that, regardless of their initial transport behavior, all four TMDs can be used in either p- or n-channel devices when appropriately doped. The extent of doping can be controlled by varying the concentration of dopant solutions and treatment time, and, in some cases, both nondegenerate and degenerate regimes are accessible. For all four TMD materials, the photoluminescence intensity; for all four materials the PL intensity is enhanced with p-doping but reduced with n-doping. Raman and X-ray photoelectron spectroscopy (XPS) also provide insight into the underlying physical mechanism by which the molecular dopants react with the monolayer. Estimates of changes of carrier density from electrical, PL, and XPS results are compared. Overall a simple and effective route to tailor the electrical and optical properties of TMDs is demonstrated.

7.
2d Mater ; 5(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29545949

RESUMO

Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride (a-BN and h-BN) films. The a-BN is formed with pulsed laser deposition and the h-BN is grown with triethylboron (TEB) and NH3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a-BN, and h-BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h-BN heterostructure.

8.
Adv Funct Mater ; 3(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230154

RESUMO

Organic field-effect transistor (OFET) performance is dictated by its composition and geometry, as well as the quality of the organic semiconductor (OSC) film, which strongly depends on purity and microstructure. When present, impurities and defects give rise to trap states in the bandgap of the OSC, lowering device performance. Here, 2,8-difluoro-5,11-bis(triethylsilylethynyl)-anthradithiophene is used as a model system to study the mechanism responsible for performance degradation in OFETs due to isomer coexistence. The density of trapping states is evaluated through temperature dependent current-voltage measurements, and it is discovered that OFETs containing a mixture of syn- and anti-isomers exhibit a discrete trapping state detected as a peak located at ~ 0.4 eV above the valence-band edge, which is absent in the samples fabricated on single-isomer films. Ultraviolet photoelectron spectroscopy measurements and density functional theory calculations do not point to a significant difference in electronic band structure between individual isomers. Instead, it is proposed that the dipole moment of the syn-isomer present in the host crystal of the anti-isomer locally polarizes the neighboring molecules, inducing energetic disorder. The isomers can be separated by applying gentle mechanical vibrations during film crystallization, as confirmed by the suppression of the peak and improvement in device performance.

9.
Nanoscale ; 9(32): 11537-11544, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28767112

RESUMO

Atmospheric chemical doping can be used to modify the electronic properties of graphene. Here we report that the chemical atmospheric doping (derived from air, oxygen and water vapor) of low-carrier-density monolayer epitaxial graphene on SiC can be readily tuned by a simple low-temperature (T ≤ 450 K), in situ vacuum gentle heating method. Interestingly, such an approach allows, for the first time, the observation of a crossover from graphene (µt/µq ≈ 2) to an "ordinary metal" (µt/µq ≈ 1) with decreasing carrier density, where µt and µq are transport mobility and quantum mobility, respectively. In the low carrier density limit, our results are consistent with the theoretical prediction that µt is inversely proportional to charged impurity density. Our data also suggest that atmospheric chemical doping can be used to vary intervalley scattering in graphene which plays a crucial role in backward scattering events.

11.
Adv Electron Mater ; 2(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29387522

RESUMO

The organic charge-transfer (CT) complex dibenzotetrathiafulvalene - 7,7,8,8-tetracyanoquinodimethane (DBTTF-TCNQ) is found to crystallize in two polymorphs when grown by physical vapor transport: the known α-polymorph and a new structure, the ß-polymorph. Structural and elemental analysis via selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and polarized IR spectroscopy reveal that the complexes have the same stoichiometry with a 1:1 donor:acceptor ratio, but exhibit unique unit cells. The structural variations result in significant differences in the optoelectronic properties of the crystals, as observed in our experiments and electronic-structure calculations. Raman spectroscopy shows that the α-polymorph has a degree of charge transfer of about 0.5e, while the ß-polymorph is nearly neutral. Organic field-effect transistors fabricated on these crystals reveal that in the same device structure both polymorphs show ambipolar charge transport, but the α-polymorph exhibits electron-dominant transport while the ß-polymorph is hole-dominant. Together, these measurements imply that the transport features result from differing donor-acceptor overlap and consequential varying in frontier molecular orbital mixing, as suggested theoretically for charge-transfer complexes.

12.
ACS Appl Mater Interfaces ; 7(49): 27306-13, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26600234

RESUMO

In this work, high-performance top-gated nanowire molecular flash memory has been fabricated with redox-active molecules. Different molecules with one and two redox centers have been tested. The flash memory has clean solid/molecule and dielectric interfaces, due to the pristine molecular self-assembly and the nanowire device self-alignment fabrication process. The memory cells exhibit discrete charged states at small gate voltages. Such multi-bit memory in one cell is favorable for high-density storage. These memory devices exhibit fast speed, low power, long memory retention, and exceptionally good endurance (>10(9) cycles). The excellent characteristics are derived from the intrinsic charge-storage properties of the protected redox-active molecules. Such multi-bit molecular flash memory is very attractive for high-endurance and high-density on-chip memory applications in future portable electronics.

13.
Langmuir ; 30(34): 10280-9, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25110126

RESUMO

Fabrication of electrodes with functionalized properties is of interest in many electronic applications with the surface impacting the electrical and electronic properties of devices. We report the formation of molecular monolayers containing a redox-active diruthenium(II,III) compound to gold and silicon surfaces via "click" chemistry. The use of Cu-catalyzed azide-alkyne cycloaddition enables modular design of molecular surfaces and interfaces and allows for a variety of substrates to be functionalized. Attachment of the diruthenium compound is monitored by using infrared and photoelectron spectroscopies. The highest occupied molecular (or system) orbital of the "clicked-on" diruthenium is clearly seen in the photoemission measurements and is mainly attributed to the presence of the Ru atoms. The "click" attachment is robust and provides a route to investigate the evolution of the electronic structure and properties of novel molecules attached to a variety of electrodes. The ability to attach this redox-active Ru molecule onto SiO2 and Au surfaces is important for the development of functional molecular devices such as charge-based memory devices.

14.
ACS Nano ; 8(7): 7192-201, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24968019

RESUMO

Organic semiconductors hold immense promise for the development of a wide range of innovative devices with their excellent electronic and manufacturing characteristics. Of particular interest are nonmagnetic organic semiconductors that show unusual magnetic field effects (MFEs) at small subtesla field strength that can result in substantial changes in their optoelectronic and electronic properties. These unique phenomena provide a tremendous opportunity to significantly impact the functionality of organic-based devices and may enable disruptive electronic and spintronic technologies. Here, we present an approach to vary the MFEs on the electrical resistance of organic-based systems in a simple yet reliable fashion. We experimentally modify the interfacial characteristics by adding a self-assembled monolayer between the metal electrode and the organic semiconductor, thus enabling the tuning of competing MFE mechanisms coexisting in organic semiconductors. This approach offers a robust method for tuning the magnitude and sign of magnetoresistance in organic semiconductors without compromising the ease of processing.

15.
Langmuir ; 29(6): 2083-91, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23362920

RESUMO

We have used flip chip lamination (FCL) to form monolayer and bilayer molecular junctions of carboxylic acid-containing molecules with Cu atom incorporation. Carboxylic acid-terminated monolayers are self-assembled onto ultrasmooth Au by using thiol chemistry and grafted onto n-type Si. Prior to junction formation, monolayers are physically characterized by using polarized infrared absorption spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy, confirming the molecular quality and functional group termination. FCL was used to form monolayer junctions onto H-terminated Si or bilayer junctions of carboxylic acid monolayers on Au and Si. From the electrical measurements, we find that the current through the junction is attenuated as the effective molecular length within the junction increases, indicating that molecules are electrically active within the junction. We find that the electronic transport through the bilayer junction saturates at very thick effective distances possibly because of another electron-transport mechanism that is not nonresonant tunneling as a result of trapped defects or sequential tunneling. In addition, bilayer junctions are fabricated with and without Cu atoms, and we find that the electron transport is not distinguishably different when Cu atoms are within the bilayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...