Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 117(3): 185-209, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971844

RESUMO

The human motion perception system has long been linked to motion sickness through state estimation conflict terms. However, to date, the extent to which available perception models are able to predict motion sickness, or which of the employed perceptual mechanisms are of most relevance to sickness prediction, has not been studied. In this study, the subjective vertical model, the multi-sensory observer model and the probabilistic particle filter model were all validated for their ability to predict motion perception and sickness, across a large set of motion paradigms of varying complexity from literature. It was found that even though the models provided a good match for the perception paradigms studied, they could not be made to capture the full range of motion sickness observations. The resolution of the gravito-inertial ambiguity has been identified to require further attention, as key model parameters selected to match perception data did not optimally match motion sickness data. Two additional mechanisms that may enable better future predictive models of sickness have, however, been identified. Firstly, active estimation of the magnitude of gravity appears to be instrumental for predicting motion sickness induced by vertical accelerations. Secondly, the model analysis showed that the influence of the semicircular canals on the somatogravic effect may explain the differences in the dynamics observed for motion sickness induced by vertical and horizontal plane accelerations.


Assuntos
Percepção de Movimento , Enjoo devido ao Movimento , Humanos , Enjoo devido ao Movimento/diagnóstico , Movimento (Física) , Canais Semicirculares , Gravitação
2.
Front Syst Neurosci ; 16: 866503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615427

RESUMO

The relationship between the amplitude of motion and the accumulation of motion sickness in time is unclear. Here, we investigated this relationship at the individual and group level. Seventeen participants were exposed to four oscillatory motion stimuli, in four separate sessions, separated by at least 1 week to prevent habituation. Motion amplitude was varied between sessions at either 1, 1.5, 2, or 2.5 ms-2. Time evolution was evaluated within sessions applying: an initial motion phase for up to 60 min, a 10-min rest, a second motion phase up to 30 min to quantify hypersensitivity and lastly, a 5-min rest. At both the individual and the group level, motion sickness severity (MISC) increased linearly with respect to acceleration amplitude. To analyze the evolution of sickness over time, we evaluated three variations of the Oman model of nausea. We found that the slow (502 s) and fast (66.2 s) time constants of motion sickness were independent of motion amplitude, but varied considerably between individuals (slow STD = 838 s; fast STD = 79.4 s). We also found that the Oman model with output scaling following a power law with an exponent of 0.4 described our data much better as compared to the exponent of 2 proposed by Oman. Lastly, we showed that the sickness forecasting accuracy of the Oman model depended significantly on whether the participants had divergent or convergent sickness dynamics. These findings have methodological implications for pre-experiment participant screening, as well as online tuning of automated vehicle algorithms based on sickness susceptibility.

3.
Exp Brain Res ; 240(4): 1231-1240, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192043

RESUMO

High levels of vehicle automation are expected to increase the risk of motion sickness, which is a major detriment to driving comfort. The exact relation between motion sickness and discomfort is a matter of debate, with recent studies suggesting a relief of discomfort at the onset of nausea. In this study, we investigate whether discomfort increases monotonously with motion sickness and how the relation can best be characterized in a semantic experiment (Experiment 1) and a motion sickness experiment (Experiment 2). In Experiment 1, 15 participants performed pairwise comparisons on the subjective discomfort associated with each item on the popular MIsery SCale (MISC) of motion sickness. In Experiment 2, 17 participants rated motion sickness using the MISC during exposures to four sustained motion stimuli, and provided (1) numerical magnitude estimates of the discomfort experienced for each level of the MISC, and (2) verbal magnitude estimates with seven qualifiers, ranging between feeling 'excellent' and 'terrible'. The data of Experiment 1 show that the items of the MISC are ranked in order of appearance, with the exception of 5 ('severe dizziness, warmth, headache, stomach awareness, and sweating') and 6 ('slight nausea'), which are ranked in opposite order. However, in Experiment 2, we find that discomfort associated with each level of the MISC, as it was used to express motion sickness during exposure to a sickening stimulus, increases monotonously; following a power law with an exponent of 1.206. While the results of Experiment 1 replicate the non-linearity found in recent studies, the results of Experiment 2 suggest that the non-linearity is due to the semantic nature of Experiment 1, and that there is a positive monotonous relation between MISC and discomfort in practice. These results support the suitability of MISC to assess motion sickness.


Assuntos
Condução de Veículo , Enjoo devido ao Movimento , Humanos , Movimento (Física) , Enjoo devido ao Movimento/etiologia , Náusea/etiologia
4.
Exp Brain Res ; 239(6): 1727-1745, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33779793

RESUMO

Previous literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = - 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


Assuntos
Percepção de Movimento , Enjoo devido ao Movimento , Humanos , Movimento (Física) , Rotação , Percepção Espacial
5.
Exp Brain Res ; 239(2): 515-531, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33249541

RESUMO

We investigated and modeled the temporal evolution of motion sickness in a highly dynamic sickening drive. Slalom maneuvers were performed in a passenger vehicle, resulting in lateral accelerations of 0.4 g at 0.2 Hz, to which participants were subjected as passengers for up to 30 min. Subjective motion sickness was recorded throughout the sickening drive using the MISC scale. In addition, physiological and postural responses were evaluated by recording head roll, galvanic skin response (GSR) and electrocardiography (ECG). Experiment 1 compared external vision (normal view through front and side car windows) to internal vision (obscured view through front and side windows). Experiment 2 tested hypersensitivity with a second exposure a few minutes after the first drive and tested repeatability of individuals' sickness responses by measuring these two exposures three times in three successive sessions. An adapted form of Oman's model of nausea was used to quantify sickness development, repeatability, and motion sickness hypersensitivity at an individual level. Internal vision was more sickening compared to external vision with a higher mean MISC (4.2 vs. 2.3), a higher MISC rate (0.59 vs. 0.10 min-1) and more dropouts (66% vs. 33%) for whom the experiment was terminated due to reaching a MISC level of 7 (moderate nausea). The adapted Oman model successfully captured the development of sickness, with a mean model error, including the decay during rest and hypersensitivity upon further exposure, of 11.3%. Importantly, we note that knowledge of an individuals' previous motion sickness response to sickening stimuli increases individual modeling accuracy by a factor of 2 when compared to group-based modeling, indicating individual repeatability. Head roll did not vary significantly with motion sickness. ECG varied slightly with motion sickness and time. GSR clearly varied with motion sickness, where the tonic and phasic GSR increased 42.5% and 90%, respectively, above baseline at high MISC levels, but GSR also increased in time independent of motion sickness, accompanied with substantial scatter.


Assuntos
Enjoo devido ao Movimento , Resposta Galvânica da Pele , Cabeça , Humanos , Náusea/etiologia , Visão Ocular
6.
Hum Factors ; 62(6): 897-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31408361

RESUMO

OBJECTIVE: Use Fitts' law to compare accuracy and throughput of three flight deck interfaces for navigation. BACKGROUND: Industry is proposing touch-based solutions to modernize the flight management system. However, research evaluating touchscreen effectiveness for navigation tasks in terms of accuracy and throughput on the flight deck is lacking. METHOD: An experiment was conducted with 14 participants in a flight simulator, aimed at creating Fitts' law accuracy and throughput models of three different flight deck interfaces used for navigation: the mode control panel, control display unit, and a touch-based navigation display. The former two constitute the conventional interface between the pilot and the flight management system, and the latter represents the industry-proposed solution for the future. RESULTS: Results indicate less accurate performance with the touchscreen navigation display compared to the other two interfaces and the throughput was lowest with the mode control panel. The control display unit was better in both accuracy and throughput, which is found to be largely attributed to the tactile and physical nature of the interface. CONCLUSION: Although performance in terms of accuracy and throughput was better with the control display unit, a question remains whether, when used during a more realistic navigation task, performance is still better compared to a touch-based interface. APPLICATION: This paper complements previous studies in the usage of aircraft touchscreens with new empirical insights into their accuracy and throughput, compared to conventional flight deck interfaces, using Fitts' law.


Assuntos
Movimento , Desempenho Psicomotor , Aeronaves , Humanos
7.
IEEE Trans Cybern ; 49(3): 768-780, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29993968

RESUMO

The human controller (HC) in manual control of a dynamical system often follows a visible and predictable reference path (target). The HC can adopt a control strategy combining closed-loop feedback and an open-loop feedforward response. The effects of the target signal waveform shape and the system dynamics on the human feedforward dynamics are still largely unknown, even for common, stable, vehicle-like dynamics. This paper studies the feedforward dynamics through computer model simulations and compares these to system identification results from human-in-the-loop experimental data. Two target waveform shapes are considered, constant velocity ramp segments and constant acceleration parabola segments. Furthermore, three representative vehicle-like system dynamics are considered: 1) a single integrator (SI); 2) a second-order system; and 3) a double integrator. The analyses show that the HC utilizes a combined feedforward/feedback control strategy for all dynamics with the parabola target, and for the SI and second-order system with the ramp target. The feedforward model parameters are, however, very different between the two target waveform shapes, illustrating the adaptability of the HC to task variables. Moreover, strong evidence of anticipatory control behavior in the HC is found for the parabola target signal. The HC anticipates the future course of the parabola target signal given extensive practice, reflected by negative feedforward time delay estimates.

8.
IEEE Trans Cybern ; 48(4): 1242-1252, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28391217

RESUMO

This paper investigates how humans use a previewed target trajectory for control in tracking tasks with various controlled element dynamics. The human's hypothesized "near" and "far" control mechanisms are first analyzed offline in simulations with a quasi-linear model. Second, human control behavior is quantified by fitting the same model to measurements from a human-in-the-loop experiment, where subjects tracked identical target trajectories with a pursuit and a preview display, each with gain, single-, and double-integrator controlled element dynamics. Results show that target-tracking performance improves with preview, primarily due to the far-viewpoint response, which allows humans to cancel their own and the controlled element's lags, without additional control activity. The near-viewpoint response yields better target tracking at higher frequencies, but requires substantially more control activity. The control-theoretic approach adopted in this paper provides unique quantitative insights into human use of preview, which can help to explain human behavior observed in other preview control tasks, like driving.


Assuntos
Sistemas Homem-Máquina , Análise e Desempenho de Tarefas , Simulação por Computador , Humanos , Modelos Teóricos
9.
IEEE Trans Cybern ; 48(1): 2-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27662694

RESUMO

Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

10.
IEEE Trans Cybern ; 46(11): 2609-2621, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26540722

RESUMO

Real-life tracking tasks often show preview information to the human controller about the future track to follow. The effect of preview on manual control behavior is still relatively unknown. This paper proposes a generic operator model for preview tracking, empirically derived from experimental measurements. Conditions included pursuit tracking, i.e., without preview information, and tracking with 1 s of preview. Controlled element dynamics varied between gain, single integrator, and double integrator. The model is derived in the frequency domain, after application of a black-box system identification method based on Fourier coefficients. Parameter estimates are obtained to assess the validity of the model in both the time domain and frequency domain. Measured behavior in all evaluated conditions can be captured with the commonly used quasi-linear operator model for compensatory tracking, extended with two viewpoints of the previewed target. The derived model provides new insights into how human operators use preview information in tracking tasks.


Assuntos
Cibernética/métodos , Sistemas Homem-Máquina , Modelos Teóricos , Humanos
11.
IEEE Trans Cybern ; 45(2): 253-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486659

RESUMO

In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.


Assuntos
Retroalimentação , Sistemas Homem-Máquina , Modelos Biológicos , Análise e Desempenho de Tarefas , Adulto , Cibernética , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
IEEE Trans Cybern ; 43(6): 1936-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23757583

RESUMO

In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.


Assuntos
Algoritmos , Biorretroalimentação Psicológica/fisiologia , Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...