Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Imaging Biol ; 25(1): 58-73, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36002710

RESUMO

The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.


Assuntos
Neoplasias da Mama , Catepsinas , Cisteína , Animais , Camundongos , Catepsinas/metabolismo , Cisteína/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/cirurgia , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/cirurgia
2.
Diagnostics (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36553163

RESUMO

Background: Management of patients with radioiodine (RAI)-refractory differentiated thyroid cancer (DTC) is a challenge as I-131 therapy is deemed ineffective while standard-of-care systemic therapy with tyrosine kinase inhibitor (TKI) lenvatinib is associated with frequent toxicities leading to dose reductions and withdrawal. A potential new treatment approach is to use TKIs as redifferentiation agent to restore RAI uptake to an extent that I-131 therapy is warranted. Prior studies show that short-term treatment with other TKIs restores RAI uptake in 50-60% of radioiodine-refractory DTC patients, but this concept has not been investigated for lenvatinib. Furthermore, the optimal duration of treatment with TKIs for maximal redifferentiation has not been explored. Methods and Design: A total of 12 patients with RAI-refractory DTC with an indication for lenvatinib will undergo I-124 PET/CT to quantify RAI uptake. This process is repeated after 6 and 12 weeks post-initiating lenvatinib after which the prospective dose estimate to target lesions and organs at risk will be determined. Patients will subsequently stop lenvatinib and undergo I-131 treatment if it is deemed effective and safe by predefined norms. The I-124 PET/CT measurements after 6 and 12 weeks of the first six patients are compared and the optimal timepoint will be determined for the remaining patients. In all I-131 treated patients post-therapy SPECT/CT dosimetry verification will be performed. During follow-up, clinical response will be evaluated using serum thyroglobulin levels and F-18 FDG PET/CT imaging for 6 months. It is hypothesized that at least 40% of patients will show meaningful renewed RAI uptake after short-term lenvatinib treatment. Discussion: Shorter treatment duration of lenvatinib treatment is preferred because of frequent toxicity-related dose reductions and drug withdrawals in long-term lenvatinib treatment. Short-term treatment with lenvatinib with subsequent I-131 therapy poses a potential new management approach for these patients. Since treatment duration is reduced and I-131 therapy is more tolerable for most patients, this potentially leads to less toxicity and higher quality of life. Identifying RAI-refractory DTC patients who redifferentiate after lenvatinib therapy is therefore crucial. Trial Registration: ClinicalTrials.gov, NTC04858867.

3.
Cancer Imaging ; 22(1): 48, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068619

RESUMO

Molecular imaging technologies are increasingly used to diagnose, monitor, and guide treatment of i.e., cancer. In this review, the current status and future prospects of the use of molecular imaging as an instrument to help realize precision surgery is addressed with focus on the main components that form the conceptual basis of intraoperative molecular imaging. Paramount for successful interventions is the relevance and accessibility of surgical targets. In addition, selection of the correct combination of imaging agents and modalities is critical to visualize both microscopic and bulk disease sites with high affinity and specificity. In this context developments within engineering/imaging physics continue to drive the growth of image-guided surgery. Particularly important herein is enhancement of sensitivity through improved contrast and spatial resolution, features that are critical if sites of cancer involvement are not to be overlooked during surgery. By facilitating the connection between surgical planning and surgical execution, digital surgery technologies such as computer-aided visualization nicely complement these technologies. The complexity of image guidance, combined with the plurality of technologies that are becoming available, also drives the need for evaluation mechanisms that can objectively score the impact that technologies exert on the performance of healthcare professionals and outcome improvement for patients.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Humanos , Imagem Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos
4.
Sci Rep ; 12(1): 6286, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428777

RESUMO

[177Lu]Lu-DOTA-NNV003, a radioimmunoconjugate targeting CD37, is developed as novel radioimmunotherapy (RIT) treatment for patients with B cell non-Hodgkin's lymphoma (NHL). Since patients are at risk for developing hematological toxicities due to CD37 expression on normal B cells, we aimed to develop 89Zr-labeled NNV003 for positron emission tomography (PET) imaging as a surrogate tool to predict [177Lu]Lu-DOTA-NNV003 RIT whole-body distribution and tumor uptake. NNV003 antibody was first radiolabeled with 89Zr. [89Zr]Zr-N-sucDf-NNV003 tumor uptake was evaluated by PET imaging of mice bearing human CD37-expressing REC1 B cell NHL or RAMOS Burkitt's lymphoma xenograft tumors followed by ex vivo analysis. Finally, CD37-targeting of [89Zr]Zr-N-sucDf-NNV003 and [177Lu]Lu-DOTA-NNV003 RIT were compared. [89Zr]Zr-N-sucDf-NNV003 accumulated in REC1 tumors over time, which was not observed for non-specific, 111In-labeled IgG control molecule. In RAMOS tumor-bearing mice, [89Zr]Zr-N-sucDf-NNV003 tumor uptake was higher than [111In]In-DTPA-IgG at all tested tracer protein doses (10 µg, 25 µg and 100 µg; P < 0.01), further confirming [89Zr]Zr-N-sucDf-NNV003 tumor uptake is CD37-mediated. [89Zr]Zr-N-sucDf-NNV003 and [177Lu]Lu-DOTA-NNV003 RIT showed similar ex vivo biodistribution and tumor uptake in the RAMOS tumor model. In conclusion, [89Zr]Zr-N-sucDf-NNV003 PET imaging can serve to accurately predict CD37-targeting of [177Lu]Lu-DOTA-NNV003. To enable clinical implementation, we established a good manufacturing practice (GMP)-compliant production process for [89Zr]Zr-N-sucDf-NNV003.


Assuntos
Linfoma de Células B , Radioimunoterapia , Animais , Linhagem Celular Tumoral , Humanos , Imunoglobulina G , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/radioterapia , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Radioimunoterapia/métodos , Distribuição Tecidual
5.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409131

RESUMO

The endoplasmic reticulum represents the gateway to the secretory pathway. Here, proteins destined for secretion, as well as soluble and membrane proteins that reside in the endomembrane system and plasma membrane, are triaged from proteins that will remain in the cytosol or be targeted to other cellular organelles. This process requires the faithful recognition of specific targeting signals and subsequent delivery mechanisms to then target them to the translocases present at the ER membrane, which can either translocate them into the ER lumen or insert them into the lipid bilayer. This review focuses on the current understanding of the first step in this process representing the targeting phase. Targeting is typically mediated by cleavable N-terminal hydrophobic signal sequences or internal membrane anchor sequences; these can either be captured co-translationally at the ribosome or recognised post-translationally and then delivered to the ER translocases. Location and features of the targeting sequence dictate which of several overlapping targeting pathway substrates will be used. Mutations in the targeting machinery or targeting signals can be linked to diseases.


Assuntos
Retículo Endoplasmático , Sinais Direcionadores de Proteínas , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico
6.
EJNMMI Res ; 12(1): 14, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254544

RESUMO

BACKGROUND: With the rise of prostate-specific membrane antigen (PSMA) radioguided surgery, which is performed using a microdosing regime, demand for visual target confirmation via fluorescence guidance is growing. While proven very effective for radiotracers, microdosing approaches the detection limit for fluorescence imaging. Thus, utility will be highly dependent on the tracer performance, the sensitivity of the fluorescence camera used, and the degree of background signal. Using a porcine model the ability to perform robot-assisted radical prostatectomy under fluorescence guidance using the bimodal or rather hybrid PSMA tracer (99mTc-EuK-(SO3)Cy5-mas3) was studied, while employing the tracer in a microdosing regime. This was followed by ex vivo evaluation in surgical specimens obtained from prostate cancer patients. RESULTS: T50% blood and T50% urine were reached at 85 min and 390 min, in, respectively, blood and urine. Surgical fluorescence imaging allowed visualization of the prostate gland based on the basal PSMA-expression in porcine prostate. Together, in vivo visualization of the prostate and urinary excretion suggests at least an interval of > 7 h between tracer administration and surgery. Confocal microscopy of excised tissues confirmed tracer uptake in kidney and prostate, which was confirmed with PSMA IHC. No fluorescence was detected in other excised tissues. Tumor identification based on ex vivo fluorescence imaging of human prostate cancer specimens correlated with PSMA IHC. CONCLUSION: Intraoperative PSMA-mediated fluorescence imaging with a microdosing approach was shown to be feasible. Furthermore, EuK-(SO3)Cy5-mas3 allowed tumor identification in human prostate samples, underlining the translational potential of this novel tracer. Trial registration Approval for use of biological material for research purposes was provided by the Translational Research Board of the Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital (NKI-AvL) under reference IRBm19-273 (22/10/2019).

7.
FEBS J ; 289(22): 6835-6862, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33960686

RESUMO

The Sec61 complex is the major protein translocation channel of the endoplasmic reticulum (ER), where it plays a central role in the biogenesis of membrane and secretory proteins. Whilst Sec61-mediated protein translocation is typically coupled to polypeptide synthesis, suggestive of significant complexity, an obvious characteristic of this core translocation machinery is its surprising simplicity. Over thirty years after its initial discovery, we now understand that the Sec61 complex is in fact the central piece of an elaborate jigsaw puzzle, which can be partly solved using new research findings. We propose that the Sec61 complex acts as a dynamic hub for co-translational protein translocation at the ER, proactively recruiting a range of accessory complexes that enhance and regulate its function in response to different protein clients. It is now clear that the Sec61 complex does not have a monopoly on co-translational insertion, with some transmembrane proteins preferentially utilising the ER membrane complex instead. We also have a better understanding of post-insertion events, where at least one membrane-embedded chaperone complex can capture the newly inserted transmembrane domains of multi-span proteins and co-ordinate their assembly into a native structure. Having discovered this array of Sec61-associated components and competitors, our next challenge is to understand how they act together in order to expand the range and complexity of the membrane proteins that can be synthesised at the ER. Furthermore, this diversity of components and pathways may open up new opportunities for targeted therapeutic interventions designed to selectively modulate protein biogenesis at the ER.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Humanos , Canais de Translocação SEC/genética , Canais de Translocação SEC/química , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Transporte Proteico/fisiologia , Processamento de Proteína Pós-Traducional
8.
Clin Cancer Res ; 26(15): 3999-4009, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953313

RESUMO

PURPOSE: Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 (89Zr). EXPERIMENTAL DESIGN: 89Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis. RESULTS: PET imaging revealed 89Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89Zr-PbCtrl. Tumor tissue autoradiography showed high 89Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89Zr-CX-072 uptake by lymphoid tissues of immune-competent mice bearing MC38 tumors was low compared with 89Zr-CX-075, which lacks the Probody design. CONCLUSIONS: 89Zr-CX-072 accumulates specifically in PD-L1-expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491).


Assuntos
Anticorpos Monoclonais/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacocinética , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacocinética , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Autorradiografia , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/química , Masculino , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos/administração & dosagem , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/administração & dosagem , Zircônio/química , Zircônio/farmacocinética
9.
Oncogene ; 38(9): 1477-1488, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30305724

RESUMO

Tumor responses to cancer therapeutics are generally monitored every 2-3 months based on changes in tumor size. Dynamic biomarkers that reflect effective engagement of targeted therapeutics to the targeted pathway, so-called "effect sensors", would fulfill a need for non-invasive, drug-specific indicators of early treatment effect. Using a proteomics approach to identify effect sensors, we demonstrated MUC1 upregulation in response to epidermal growth factor receptor (EGFR)-targeting treatments in breast and lung cancer models. To achieve this, using semi-quantitative mass spectrometry, we found MUC1 to be significantly and durably upregulated in response to erlotinib, an EGFR-targeting treatment. MUC1 upregulation was regulated transcriptionally, involving PI3K-signaling and STAT3. We validated these results in erlotinib-sensitive human breast and non-small lung cancer cell lines. Importantly, erlotinib treatment of mice bearing SUM149 xenografts resulted in increased MUC1 shedding into plasma. Analysis of MUC1 using serial blood sampling may therefore be a new, relatively non-invasive tool to monitor early and drug-specific effects of EGFR-targeting therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Mucina-1/genética , Fator de Transcrição STAT3/genética , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Humanos , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto
11.
MAbs ; 9(8): 1370-1378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28873009

RESUMO

Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib effects on HER3 cell surface expression and mAb3481 internalization were evaluated in human breast (BT474, SKBR3) and gastric (N87) cancer cell lines using flow cytometry. Next, in vivo effects of daily lapatinib treatment on89Zr-mAb3481 BT474 and N87 xenograft tumor uptake were studied. PET-scans (BT474 only) were made after daily lapatinib treatment for 9 days, starting 3 days prior to 89Zr-mAb3481 administration. Subsequently, ex vivo 89Zr-mAb3481 organ distribution analysis was performed and HER3 tumor levels were measured with Western blot and immunohistochemistry. In vitro, lapatinib increased membranous HER3 in BT474, SKBR3 and N87 cells, and consequently mAb3481 internalization 1.7-fold (BT474), 1.4-fold (SKBR3) and 1.4-fold (N87). 89Zr-mAb3481 BT474 tumor uptake was remarkably high at SUVmean 5.6±0.6 (51.8±7.7%ID/g) using a 10 µg 89Zr-mAb3481 protein dose in vehicle-treated mice. However, compared to vehicle, lapatinib did not affect 89Zr-mAb3481 ex vivo uptake in BT474 and N87 tumors, while HER3 tumor expression remained unchanged. In conclusion, lapatinib increased in vitro HER3 tumor cell expression, but not when these cells were xenografted. 89Zr-mAb3481 PET accurately reflected HER3 tumor status. 89Zr-mAb3481 PET showed high, HER3-specific tumor uptake, and such an approach might sensitively assess HER3 tumor heterogeneity and treatment response in patients.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Quinazolinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos/administração & dosagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/imunologia , Feminino , Humanos , Lapatinib , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Radioisótopos , Receptor ErbB-3/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Zircônio
12.
Theranostics ; 7(7): 2111-2133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638489

RESUMO

Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.


Assuntos
Receptores ErbB/análise , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos
13.
Oncotarget ; 8(28): 45432-45446, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467975

RESUMO

Imgatuzumab is a novel glycoengineered anti-epidermal growth factor receptor (EGFR) monoclonal antibody optimized to induce both antibody-dependent cellular cytotoxicity (ADCC) and EGFR signal transduction inhibition. We investigated anti-EGFR monoclonal antibodies imgatuzumab and cetuximab-induced internalization and membranous turnover of EGFR, and whether this affected imgatuzumab-mediated ADCC responses and growth inhibition of non-small cell lung cancer (NSCLC) cells.In a panel of wild-type EGFR expressing human NSCLC cell lines, membranous and total EGFR levels were downregulated more effectively by imgatuzumab when compared with cetuximab. Imgatuzumab plus cetuximab enhanced EGFR internalization and reduced membranous turnover of EGFR, resulting in an even stronger downregulation of EGFR. Immunofluorescent analysis showed that combined treatment increased clustering of receptor-antibody complexes and directed internalized EGFR to lysosomes. The antibody combination potently inhibited intracellular signaling and epidermal growth factor (EGF)-dependent cell proliferation. More importantly, robust EGFR downregulation after 72 hours with the antibody combination did not impair ADCC responses.In conclusion, imgatuzumab plus cetuximab leads to a strong downregulation of EGFR and superior cell growth inhibition in vitro without affecting antibody-induced ADCC responses. These findings support further clinical exploration of the antibody combination in EGFR wild-type NSCLC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos Imunológicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cetuximab/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Lisossomos/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise
14.
Eur J Nucl Med Mol Imaging ; 44(8): 1328-1336, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28315949

RESUMO

PURPOSE: c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of 89Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. METHODS: In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent 89Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent 89Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. RESULTS: In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, 89Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. CONCLUSION: The results show that 89Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status.


Assuntos
Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-met/metabolismo , Radioisótopos , Zircônio , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Estudos de Viabilidade , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Resorcinóis/farmacologia , Resorcinóis/uso terapêutico , Regulação para Cima/efeitos dos fármacos
15.
Nature ; 540(7631): 45-46, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27905422
16.
Oncotarget ; 7(42): 68111-68121, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27602494

RESUMO

Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 µg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 µg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 µg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Bevacizumab/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glicoproteínas/farmacocinética , Neoplasias Pulmonares/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , Radioisótopos/farmacocinética , Distribuição Tecidual , Transplante Heterólogo , Zircônio/farmacocinética
17.
J Nucl Med ; 57(5): 812-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26848172

RESUMO

UNLABELLED: AMG 110, a bispecific T cell engager (BiTE) antibody construct, induces T cell-mediated cancer cell death by cross-linking epithelial cell adhesion molecule (EpCAM) on tumor cells with a cluster of differentiation 3 ε (CD3ε) on T cells. We labeled AMG 110 with (89)Zr or near-infrared fluorescent dye (IRDye) 800CW to study its tumor targeting and tissue distribution. METHODS: Biodistribution and tumor uptake of (89)Zr-AMG 110 was studied up to 6 d after intravenous administration to nude BALB/c mice bearing high EpCAM-expressing HT-29 colorectal cancer xenografts. Tumor uptake of (89)Zr-AMG 110 was compared with uptake in head and neck squamous cell cancer FaDu (intermediate EpCAM) and promyelocytic leukemia HL60 (EpCAM-negative) xenografts. Intratumoral distribution in HT-29 tumors was studied using 800CW-AMG 110. RESULTS: Tumor uptake of (89)Zr-AMG 110 can be clearly visualized using small-animal PET imaging up to 72 h after injection. The highest tumor uptake of (89)Zr-AMG 110 at the 40-µg dose level was observed at 6 and 24 h (respectively, 5.35 ± 0.22 and 5.30 ± 0.20 percentage injected dose per gram; n = 3 and 4). Tumor uptake of (89)Zr-AMG 110 was EpCAM-specific and correlated with EpCAM expression. 800CW-AMG 110 accumulated at the tumor cell surface in viable EpCAM-expressing tumor tissue. CONCLUSION: PET and fluorescent imaging provided real-time information about AMG 110 distribution and tumor uptake in vivo. Our data support using (89)Zr and IRDye 800CW to evaluate tumor and tissue uptake kinetics of bispecific T cell engager antibody constructs in preclinical and clinical settings.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Molécula de Adesão da Célula Epitelial/imunologia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Linfócitos T/imunologia , Zircônio , Animais , Células HL-60 , Células HT29 , Humanos , Marcação por Isótopo , Masculino , Camundongos , Distribuição Tecidual
19.
Nat Commun ; 6: 10133, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634806

RESUMO

Two distinct pathways deliver secretory proteins to the Sec61 protein translocase in the endoplasmic reticulum membrane. The canonical pathway requires the signal recognition particle (SRP) and its cognate receptor (SR), and targets ribosome-associated proteins to the Sec translocase. The SRP-independent pathway requires the Sec translocase-associated ER membrane protein Sec62 and can be uncoupled from translation. Here we show that SR switches translocons to SRP-dependent translocation by displacing Sec62. This activity localizes to the charged linker region between the longin and GTPase domains of SRα. Using truncation variants, crosslinking and translocation assays reveals two elements with distinct functions as follows: one rearranges the translocon, displacing Sec62 from Sec61. A second promotes ribosome binding and is conserved between all eukaryotes. These specific regions in SRα reprogramme the Sec translocon and facilitate recruitment of ribosome-nascent chain complexes. Overall, our study identifies an important function of SR, which mechanistically links two seemingly independent modes of translocation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Ligação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Canais de Translocação SEC , Partícula de Reconhecimento de Sinal/genética
20.
Structure ; 23(10): 1838-1847, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26299945

RESUMO

G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRß GTPases associated with secretory membranes. SRß is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRß integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRß-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRß in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRß at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRß and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRß into the scheme of protein targeting.


Assuntos
Chaetomium/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Membranas Intracelulares/metabolismo , Subunidades Proteicas/química , Partícula de Reconhecimento de Sinal/química , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Evolução Biológica , Chaetomium/genética , Cristalografia por Raios X , Retículo Endoplasmático/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Alinhamento de Sequência , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...