Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HPB (Oxford) ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38604828

RESUMO

INTRODUCTION: This study investigates the incidence of extrahepatic perfusion and incomplete hepatic perfusion at intraoperative methylene blue testing and on postoperative nuclear imaging in patients undergoing hepatic arterial infusion pump (HAIP) chemotherapy. METHODS: The first 150 consecutive patients who underwent pump implantation in the Netherlands were included. All patients underwent surgical pump implantation with the catheter in the gastroduodenal artery. All patients underwent intraoperative methylene blue testing and postoperative nuclear imaging (99mTc-Macroaggregated albumin SPECT/CT) to determine perfusion via the pump. RESULTS: Patients were included between January-2018 and December-2021 across eight centers. During methylene blue testing, 29.3% had extrahepatic perfusion, all successfully managed intraoperatively. On nuclear imaging, no clinically relevant extrahepatic perfusion was detected (0%, 95%CI: 0.0-2.5%). During methylene blue testing, 2.0% had unresolved incomplete hepatic perfusion. On postoperative nuclear imaging, 8.1% had incomplete hepatic perfusion, leading to embolization in only 1.3%. CONCLUSION: Methylene blue testing during pump placement for intra-arterial chemotherapy identified extrahepatic perfusion in 29.3% of patients, but could be resolved intraoperatively in all patients. Postoperative nuclear imaging found no clinically relevant extrahepatic perfusion and led to embolization in only 1.3% of patients. The role of routine nuclear imaging after HAIP implantation should be studied in a larger cohort.

2.
J Nucl Med ; 57(8): 1289-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27127222

RESUMO

UNLABELLED: In the treatment of neuroendocrine tumors (NETs), complete surgical removal of malignancy is generally desirable, because it offers curative results. Preoperative guidance with radiolabeled somatostatin analogs, commonly used for NET diagnosis and preoperative planning, is limited by its low resolution, with the risk that tumor margins and small metastases will be incompletely resected with subsequent recurrence. A single hybrid probe combining radiotracer and optical dye would enable high-resolution optical guidance, also during surgery. In the current study, the hybrid labeled somatostatin analog Cy5-DTPA-Tyr(3)-octreotate (DTPA is diethylene triamine pentaacetic acid) was synthesized and evaluated for its ability to specifically trace NET cells in vitro and in an animal model. The performance of the hybrid tracer was compared with that of octreotate with only radiolabel or only optical label. METHODS: The binding affinity and internalization capacity of Cy5-DTPA-Tyr(3)-octreotate were assessed in vitro. Biodistribution profiles and both nuclear and optical in vivo imaging of Cy5-(111)In -DTPA-Tyr(3)-octreotate were performed in NET-bearing mice and compared with the performance of (111)In-DTPA-Tyr(3)-octreotate. RESULTS: In vitro studies showed a low receptor affinity and internalization rate for Cy5-DTPA-Tyr(3)-octreotate. The dissociation constant value was 387.7 ± 97.9 nM for Cy5-DTPA-Tyr(3)-octreotate, whereas it was 120.5 ± 18.1 nM for DTPA-Tyr(3)-octreotate. Similarly, receptor-mediated internalization reduced from 33.76% ± 1.22% applied dose for DTPA-Tyr(3)-octreotate to 1.32% ± 0.02% applied dose for Cy5-DTPA-Tyr(3)-octreotate. In contrast, in vivo and ex vivo studies revealed similar tumor uptake values of Cy5-(111)In-DTPA-Tyr(3)-octreotate and (111)In -DTPA-Tyr(3)-octreotate (6.93 ± 2.08 and 5.16 ± 1.27, respectively). All organs except the kidneys showed low background radioactivity, with especially low activities in the liver, and high tumor-to-tissue ratios were achieved-both favorable for the tracer's toxicity profile. Hybrid imaging in mice confirmed that the nuclear and fluorescence signals colocalized. CONCLUSION: The correlation between findings with the optical and the nuclear probes underlines the potential of combining SPECT imaging with fluorescence guidance and shows the promise of this novel hybrid peptide for preoperative and intraoperative imaging of NET.


Assuntos
Corantes Fluorescentes/farmacocinética , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Somatostatina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência/métodos , Especificidade de Órgãos , Compostos Radiofarmacêuticos/síntese química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
3.
EJNMMI Res ; 4: 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995150

RESUMO

BACKGROUND: Previously, we reported on the unexpected development of distant metastases in the subcutaneous rat pancreas CA20948 tumor model after 4.5 weeks of treatment with RAD001-only or in combination with [(177)Lu-DOTA(0),Tyr(3)]octreotate ((177)Lu-DOTATATE) (Cancer Res. 73:12-8, 2013). Moreover, the combination therapy was less effective compared to (177)Lu-DOTATATE-only. In the current study, we address the following questions: (1) Why was the combination therapy less effective? Is (177)Lu-DOTATATE tumor uptake affected by pretreatment with RAD001? (2) Could sudden cessation of RAD001 therapy cause the development of distant metastases? (3) Is (177)Lu-DOTATATE an effective treatment option for these metastases? METHODS: Lewis rats (HanHsd or SsNHsd substrain with a slight difference in immune response) bearing subcutaneous CA20948 tumors were treated with either 125 or 275 MBq (177)Lu-DOTATATE, RAD001, or their combination. RAD001 was given twice a week for 4.5 or 12 weeks, whereas (177)Lu-DOTATATE was given as a single injection. When combined, RAD001 was started either 3 days prior to or 3 days post administration of (177)Lu-DOTATATE. SPECT/CT was performed to quantify (177)Lu-DOTATATE tumor uptake. Where indicated, primary tumors were surgically removed when tumor size is >6,000 mm(3) to enable monitoring for possible metastasis. If metastases were suspected, an (111)In-DTPA-octreotide SPECT/CT scan was performed. Seven rats with metastases were treated with 400 MBq (177)Lu-DOTATATE. RESULTS: Lu-DOTATATE tumor uptake was not significantly affected by RAD001 pretreatment. The occurrence of metastases after RAD001 treatment was not dose dependent in the dose range tested, nor was it related to the duration of RAD001 treatment. In the experiment in which the LEW/SsNsd substrain was used, only 12.5% of RAD001-treated rats showed complete response (CR), compared to 50% tumor regression in the control group. Re-treatment with a high dose of (177)Lu-DOTATATE resulted in CR in only two out of seven animals. CONCLUSION: Less effective anti-tumor effects after the combination of RAD001 + (177)Lu-DOTATATE could not be explained by reduced (177)Lu-DOTATATE tumor uptake after RAD001. Our current data support RAD001-induced immune suppression as the reason for this observation. No evidence was found that cessation of RAD001 treatment caused development of metastases. Metastases appeared to be less sensitive to (177)Lu-DOTATATE treatment than primary tumors.

4.
Cancer Biother Radiopharm ; 29(4): 179-87, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24820805

RESUMO

AIMS: With the aim to improve peptide receptor radionuclide therapy effects in patients with gastroenteropancreatic neuroendocrine tumor (GEPNET) liver metastases we explored the effect of intra-arterial (IA) administration of [(111)In-DTPA]octreotide ((111)In-DTPAOC) on tumor uptake in an animal model and in a patient study. METHODS: Preclinical study: After administering (111)In-DTPAOC intra-venously (IV) or IA, biodistribution studies were performed in rats with a hepatic somatostatin receptor subtype 2 (sst2)-positive tumor. Clinical study: 3 patients with neuroendocrine liver metastases were injected twice with (111)In-DTPAOC. The first injection was given IV, and 2 weeks later, the second was injected IA (hepatic artery). Planar images of the abdomen were made up to 72 hours after injection. Blood samples were taken and urine was collected. Pharmacokinetic modeling was performed on the IV and IA data of the same patient. Based on this model, additional (177)Lu dosimetry calculations for IV and IA administrations were performed. RESULTS: The preclinical study showed a two-fold higher (111)In-DTPAOC tumor uptake after IA administration than after IV injection. Patient data showed a large variability in radioactivity increment in liver metastases after IA administration compared with IV administration. Renal radioactivity was not significantly lower after IA administration; (177)Lu dosimetry simulations in 1 patient using a maximum kidney radiation dose of 23 Gy showed IA administration resulted in a mean increase in tumor radiation dose of 2.9-fold. CONCLUSION: Preclinical and clinical data both indicate that IA administration of radiolabeled somatostatin analogs via the hepatic artery can significantly increase radionuclide uptake in GEPNET, sst2-positive, liver metastases up to 72 hours postinjection, although the effect of IA administration can differ between patients.


Assuntos
Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/radioterapia , Neoplasias Hepáticas Experimentais/radioterapia , Neoplasias Hepáticas Experimentais/secundário , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/radioterapia , Octreotida/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Ácido Pentético/análogos & derivados , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/radioterapia , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Radioisótopos de Índio/administração & dosagem , Infusões Intra-Arteriais , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Octreotida/administração & dosagem , Octreotida/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Ácido Pentético/administração & dosagem , Ácido Pentético/farmacocinética , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Distribuição Tecidual
5.
Clin Transl Imaging ; 2: 55-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24765618

RESUMO

Peptide receptor radionuclide therapy (PRRT) has been shown to be an effective treatment for neuroendocrine tumors (NETs) if curative surgery is not an option. A majority of NETs abundantly express somatostatin receptors. Consequently, following administration of somatostatin (SST) analogs labeled with γ-emitting radionuclides, these tumors can be imaged for diagnosis, staging or follow-up purposes. Furthermore, when ß-emitting radionuclides are used, radiolabeled peptides (radiopeptides) can also be used for the treatment for NET patients. Even though excellent results have been achieved with PRRT, complete responses are still rare, which means that there is room for improvement. In this review, we highlight some of the directions currently under investigation in pilot clinical studies or in preclinical development to achieve this goal. Although randomized clinical trials are still lacking, early studies have shown that tumor response might be improved by application of other radionuclides, such as α-emitters or radionuclide combinations, or by adjustment of radiopeptide administration routes. Individualized dosimetry and better insight into tumor and normal organ radiation doses may allow adjustment of the amount of administered activity per cycle or the number of treatment cycles, resulting in more personalized treatment schedules. Other options include the application of novel (radiolabeled) SST analogs with improved tumor uptake and radionuclide retention time, or a combination of PRRT with other systemic therapies, such as chemotherapy or treatment with radio sensitizers. Though promising directions appear to bring improvements of PRRT within reach, additional research (including randomized clinical trials) is needed to achieve such improvements.

6.
Cancer Res ; 73(1): 12-8, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23149918

RESUMO

Inhibition of mTOR is commonly considered a valid target in cancer treatment, but this assertion does not address effects on the immune microenvironment that may be detrimental to cancer treatment. Here we show how administration of the mTOR inhibitor RAD001 (everolimus) results in the occurrence of distant metastasis in a rat model of pancreatic cancer. RAD001 was administered twice weekly for 4.5 weeks as a single treatment or combined with [(177)Lu-DOTA,Tyr3]octreotate ((177)Lu-DOTATATE), where the latter targets the somatostatin receptor-2. The hypothesized synergistic therapeutic effect of RAD001 combined with (177)Lu-DOTATATE was, however, not observed in our experiments. The combination was shown to be less effective than (177)Lu-DOTATATE alone. Unexpectedly, tumor metastasis was observed in 77% of the subjects treated with RAD001, either alone or as part of the combination treatment. This was a striking effect, because metastasis did not occur in control or (177)Lu-DOTATATE-treated animals, including those where the primary tumor was surgically removed. These findings may be important clinically among noncompliant patients or patients that discontinue RAD001 therapy because of adverse effects.


Assuntos
Antineoplásicos/efeitos adversos , Carcinoma Neuroendócrino/patologia , Neoplasias Pancreáticas/patologia , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Everolimo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Ratos , Ratos Endogâmicos Lew , Sirolimo/efeitos adversos , Serina-Treonina Quinases TOR/imunologia
7.
Mol Imaging ; 11(1): 27-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22418025

RESUMO

Multimodal bioluminescence (BLI) and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging were investigated as means to monitor somatostatin receptor subtype 2 (SST2)-positive neuroendocrine tumors as both a subcutaneously implanted and a liver metastasis animal model in mice and rats. Ultimately, such a model will be of use for studying SST2-targeted peptide receptor radionuclide therapy (PRRT). CA20948 cells were transfected with a green fluorescent protein/luciferase plasmid construct. Cells were inoculated subcutaneously in the shoulder of nude mice: nontransfected cells in the left shoulder and transfected cells in the right shoulder. BLI, SPECT/CT imaging, biodistribution analysis, and ex vivo autoradiography of the tumors were performed. BLI and SPECT/CT imaging were also performed on an intrahepatic tumor model in the rat. Caliper volume measurement of transfected tumors could be correlated with BLI measurements (R2 = .76). SPECT/CT imaging showed high levels of accumulation of 111In-DTPA-octreotide in control and transfected tumors, which was confirmed by biodistribution analysis and autoradiography. Subcapsular inoculation of transfected cells in rat liver resulted in an intrahepatic tumor, which could be visualized by both SPECT/CT and BLI. Transfection of CA20948 tumor cells did not alter the growth properties of the cell line or the expression of SST2. Transfected tumors could be clearly visualized by BLI and SPECT/CT imaging. The transfected SST2-positive tumor cell line could represent a novel preclinical model for tumor monitoring in studies that aim at further optimizing PRRT for neuroendocrine tumors.


Assuntos
Receptores de Somatostatina/metabolismo , Animais , Autorradiografia , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Radiografia , Ratos , Tomografia Computadorizada de Emissão de Fóton Único
8.
Semin Nucl Med ; 40(3): 209-18, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20350630

RESUMO

In the 1980s, the (111)In-labeled somatostatin analog OctreoScan (Covidien, Hazelwood, MO) was developed for imaging of somatostatin receptor subtype 2 (sst(2)) overexpressing tumors. On the basis of this success, peptide receptor radionuclide therapy (PRRT) was developed using similar somatostatin analogs with different therapeutic radionuclides. Clinical application of PRRT demonstrated impressive results on tumor response, overall survival, and quality of life in patients with gastroenteropancreatic neuroendocrine tumors. The peptides 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), Tyr(3)-octreotate (DOTATATE) and DOTA, Tyr(3)-octreotide (DOTATOC) (brand name Onalta), predominantly targeting sst(2), have been granted Orphan Drug status by the European Medicines Agency and the US Food and Drug Administration for application in PRRT. Besides somatostatin receptor-targeting peptides, multiple other radiopeptide analogs were developed targeting several other receptors overexpressed on various tumors. Some of these peptide analogs, including cholecystokinin, gastrin, gastrin-releasing peptide, arginine-glycine-aspartate (RGD)-peptides, and glucagon-like peptide 1 analogs appeared very promising in preclinical and clinical imaging and PRRT studies. Although the success of PRRT with radiolabeled somatostatin analogs has been established, there is still room for improvement. The therapeutic window of PRRT could be enlarged by the use of new and improved targeting compounds, of which new antagonists with excellent tumor to background ratios are very promising. Furthermore, locoregional administration, improved healthy tissue protection, and combination treatment can be applied to increase the effectiveness of PRRT. Combination treatment might include cocktails of different peptide analogs of different therapeutic radionuclides and of radiolabeled peptides with chemotherapeutic or radiosensitizing agents. This review summarizes results of PRRT and describes clinical and preclinical studies regarding PRRT optimizing strategies.


Assuntos
Neoplasias/metabolismo , Neoplasias/radioterapia , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Radioisótopos/uso terapêutico , Receptores de Peptídeos/metabolismo , Partículas alfa , Animais , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Marcação por Isótopo/métodos , Peptídeos/química , Radioisótopos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...