Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 197: 110828, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37126950

RESUMO

A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified. The ICE spectrum has an energy resolution of 1.8-1.9 keV at 72 keV and shows peaks from the K, L, M, N+ ICEs of the 79.51 keV and 88.967 keV 2+-0+ gamma transitions from the first excited states in 158Gd and 156Gd, respectively, as well as the K ICEs of the 4+-2+ transitions at 181.931 keV and 199.213 keV from the respective second excited states. Spectrum analysis was performed using a convolution of a Gaussian with exponential functions at the low and high energy side as the peak shaping function. Relative ICE intensities were derived from the fitted peak areas and compared with internal conversion coefficient (ICC) values calculated from the BrIcc database. Relative to the dominant L shell contribution, the K ICE intensity conforms to BrIcc and the M, N, O+ ICE intensities are somewhat higher than expected.

2.
Rev Sci Instrum ; 90(3): 035110, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927771

RESUMO

The MAPS direct geometry time-of-flight chopper spectrometer at the ISIS pulsed neutron and muon source has been in operation since 1999, and its novel use of a large array of position-sensitive neutron detectors paved the way for a later generations of chopper spectrometers around the world. Almost two decades of experience of user operations on MAPS, together with lessons learned from the operation of new generation instruments, led to a decision to perform three parallel upgrades to the instrument. These were to replace the primary beamline collimation with supermirror neutron guides, to install a disk chopper, and to modify the geometry of the poisoning in the water moderator viewed by MAPS. Together, these upgrades were expected to increase the neutron flux substantially, to allow more flexible use of repetition rate multiplication and to reduce some sources of background. Here, we report the details of these upgrades and compare the performance of the instrument before and after their installation as well as to Monte Carlo simulations. These illustrate that the instrument is performing in line with, and in some respects in excess of, expectations. It is anticipated that the improvement in performance will have a significant impact on the capabilities of the instrument. A few examples of scientific commissioning are presented to illustrate some of the possibilities.

3.
QJM ; 103(8): 545-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20558407

RESUMO

The brain is a complex non-linear dynamical system that is associated with a wide repertoire of behaviours. There is an ongoing debate as to whether low-intensity radio frequency (RF) bioelectromagnetic interactions induce a biological response. If they do, it is reasonable to expect that the interaction is non-linear. Contradictory reports are found in the literature and attempts to reproduce the subtle effects have often proved difficult. Researchers have already speculated that low-intensity RF radiation may offer therapeutic potential and millimetre-wave therapy is established in the countries of the former Soviet Union. A recent study using transgenic mice that exhibit Alzheimer's-like cognitive impairment shows that microwave radiation may possibly have therapeutic application. By using a highly dynamic stimulus and feedback it may be possible to augment the small effects that have been reported using static parameters. If a firm connection between low-intensity RF radiation and biological effects is established then the possibility arises for its psychotherapeutic application. Low intensity millimetre-wave and peripheral nervous system interactions also merit further investigation. Controlled RF exposure could be associated with quite novel characteristics and dynamics when compared to those associated with pharmacotherapy.


Assuntos
Encéfalo/efeitos da radiação , Campos Eletromagnéticos , Magnetoterapia/métodos , Transtornos Mentais/radioterapia , Animais , Humanos , Camundongos
4.
Nature ; 453(7194): 469-74, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18497815

RESUMO

Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...