Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947693

RESUMO

The ability to manipulate spins in magnetic materials is essential in designing spintronics devices. One method for magnetic switching is through strain. In VO2 on TiO2 thin films, while VO2 remains rutile across the metal-insulator transition, the in-plane lattice area expands going from a low-temperature insulating phase to a high-temperature conducting phase. In a VO2/TbFeCo bilayer, the expansion of the VO2 lattice area exerts tension on the amorphous TbFeCo layer. Through the strain effect, magnetic properties, including the magnetic anisotropy and magnetization, of TbFeCo can be changed. In this work, the changes in magnetic properties of TbFeCo on VO2/TiO2(011) are demonstrated using anomalous Hall effect measurements. Across the metal-insulator transition, TbFeCo loses perpendicular magnetic anisotropy, and the magnetization in TbFeCo turns from out-of-plane to in-plane. Using atomistic simulations, we confirm these tunable magnetic properties originating from the metal-insulator transition of VO2. This study provides the groundwork for controlling magnetic properties through a phase transition.

2.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242087

RESUMO

Mn4N thin film is one of the potential magnetic mediums for spintronic devices due to its ferrimagnetism with low magnetization, large perpendicular magnetic anisotropy (PMA), thermal stability, and large domain wall velocity. Recent experiments confirmed the existence of tunable magnetic skyrmions in MgO/Mn4N/CuxPt1-x(x = 0, 0.5, 0.9, 0.95), and density functional theory (DFT) calculation provided a large theoretical value of the interfacial Dzyaloshinskii-Moriya interaction (iDMI) of Mn4N/Pt, which is consistent with the predicted chemical trend of the DMI in transition metal/Pt films. So far, the measured DMI has not been reported in Mn4N, which is needed in order to support the predicted large DMI value. This paper reports the average DMI of MgO/Mn4N(17 nm)/CuxPt1-x(3 nm) extracted from the anomalous Hall effect with various tilted angles, which is based on magnetic droplet theory with DMI effects. The DMI decreases from 0.267 mJ/m2 to 0.011 mJ/m2 with non-linear tendencies as Cu concentration in the CuxPt1-x capping layer increases from 0 to 1, demonstrating the control of the DMI through the CuxPt1-x capping layer. Furthermore, a solid solution model is developed based on an X-ray photoelectron spectroscopy (XPS) compositional depth profile to analyze the possible effects on the DMI from the mixing layers at the surface of Mn4N. After taking into account the mixing layers, the large DMI in Mn4N film with Pt capping is consistent with the predicted DMI.

3.
Sci Rep ; 12(1): 19945, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402797

RESUMO

In spintronics, it is important to be able to manipulate magnetization rapidly and reliably. Several methods can control magnetization, such as by applying current pulses or magnetic fields. An applied current can reverse magnetization with nanosecond speed through the spin torque effect. For faster switching, subpicosecond switching with femtoseconds laser pulse has been achieved in amorphous rare-earth transition-metal ferrimagnets. In this study, we employed atomistic simulations to investigate ultrafast switching in a synthetic antiferromagnet with bilayer amorphous FeGd ferrimagnets. Using a two-temperature model, we demonstrated ultrafast switching in this synthetic antiferromagnet without external magnetic fields. Furthermore, we showed that if we initially stabilize a skyrmion in this heterostructure, the ultrafast laser can switch the skyrmion state using the same mechanism. Furthermore, this bilayer design allows the control of each ferrimagnetic layer individually and opens the possibility for a magnetic tunnel junction.

4.
Sci Rep ; 10(1): 1844, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31996762

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 9(1): 15501, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664046

RESUMO

High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees of compositional freedom provide for extensive opportunities to design alloys with tailored properties. However, compositional complexities present challenges for alloy design. Current approaches have shown limited reliability in accounting for the compositional regions of single solid solution and composite phases. For the first time, a phenomenological method analysing binary phase diagrams to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to other large database statistical prediction models, this model gives more detailed and accurate phase predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 81%. The presented search approach with high predictive capability can be exploited to interact with and complement other computation-intense methods such as CALPHAD in providing an accelerated and precise HEA design.

6.
Sci Rep ; 9(1): 14892, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624277

RESUMO

Thermoelectric (TE) materials research plays a vital role in heat-to-electrical energy conversion and refrigeration applications. Bismuth-antimony (Bi-Sb) alloy is a promising material for thermoelectric cooling. Herein, a high figure of merit, ZT, near 0.6 at cryogenic temperatures (100-150 K) has been achieved in melt-spun n-type Bi85Sb15 bulk samples consisting of micron-size grains. The achieved ZT is nearly 50% higher than polycrystalline averaged single crystal ZT of ~0.4, and it is also significantly higher than ZT of less than ~0.3 measured below 150 K in Bi-Te alloys commonly used for cryogenic cooling applications. The improved thermoelectric properties can be attributed to the fine-grained microstructure achieved from rapid solidification, which not only significantly reduced the thermal conductivity but also mitigated a segregation effect. A record low thermal conductivity of ~1.5 W m-1 K-1 near 100 K was measured using the hot disk method. The thermoelectric properties for this intriguing semimetal-semiconductor alloy system were analyzed within a two-band effective mass model. The study revealed a gradual narrowing of the band gap at increasing temperature in Bi-Sb alloy for the first time. Magneto-thermoelectric effects of this Bi-Sb alloy further improved the TE properties, leading to ZT of about 0.7. The magneto-TE effect was further demonstrated in a combined NdFeB/BiSb/NdFeB system. The compactness of the BiSb-magnet system with high ZT enables the utilization of magneto-TE effect in thermoelectric cooling applications.

7.
Sci Rep ; 9(1): 9964, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292514

RESUMO

Neél skyrmions originate from interfacial Dzyaloshinskii Moriya interaction (DMI). Recent studies have explored using thin-film ferromagnets and ferrimagnets to host Neél skyrmions for spintronic applications. However, it is unclear if ultrasmall (10 nm or less) skyrmions can ever be stabilized at room temperature for practical use in high density parallel racetrack memories. While thicker films can improve stability, DMI decays rapidly away from the interface. As such, spins far away from the interface would experience near-zero DMI, raising question on whether or not unrealistically large DMI is needed to stabilize skyrmions, and whether skyrmions will also collapse away from the interface. To address these questions, we have employed atomistic stochastic Landau-Lifshitz-Gilbert simulations to investigate skyrmions in amorphous ferrimagnetic GdCo. It is revealed that a significant reduction in DMI below that of Pt is sufficient to stabilize ultrasmall skyrmions even in films as thick as 15 nm. Moreover, skyrmions are found to retain a uniform columnar shape across the film thickness due to the long ferrimagnetic exchange length despite the decaying DMI. Our results show that increasing thickness and reducing DMI in GdCo can further reduce the size of skyrmions at room temperature, which is crucial to improve the density and energy efficiency in skyrmion based devices.

8.
Sci Rep ; 8(1): 9876, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959341

RESUMO

The best thermoelectric materials are believed to be heavily doped semiconductors. The presence of a band gap is assumed to be essential to achieve large thermoelectric power factor and figure of merit. In this work, we propose semi-metals with large asymmetry between conduction and valence bands as an alternative class of thermoelectric materials. To illustrate the idea, we study semi-metallic HgTe in details experimentally and theoretically. We employ ab initio calculations with hybrid exchange-correlation functional to accurately describe the electronic band structure in conjunction with the Boltzmann Transport theory to investigate the electronic transport properties. We calculate the lattice thermal conductivity using first principles calculations and evaluate the overall figure of merit. To validate our theoretical approach, we prepare semi-metallic HgTe samples and characterize their transport properties. Our first-principles calculations agree well with the experimental data. We show that intrinsic HgTe, a semimetal with large disparity in its electron and hole masses, has a high thermoelectric power factor that is comparable to the best known thermoelectric materials. Finally, we propose other possible materials with similar band structures as potential candidates for thermoelectric applications.

9.
Appl Phys Lett ; 113(17)2018.
Artigo em Inglês | MEDLINE | ID: mdl-38903558

RESUMO

Magnetic compensation in ferrimagnets plays an important role in spintronic and magnetic recording devices. Experimental results have demonstrated a thickness dependence of the compensation temperature ( T comp ) in amorphous TbFeCo thin films. It was speculated that this thickness dependence originated from a variation in the short-range order. In this work, we have investigated the depth-resolved compositional and magnetization profiles using polarized neutron reflectometry. We find that although the composition is uniform across the film thickness, near the substrate interface, the magnetization exhibits a different temperature dependence from that of the rest of the sample. Monte Carlo simulations show that it is this difference in interfacial magnetization that causes the aforementioned thickness dependence of the compensation. These results demonstrate the critical role of the substrate interface in determining the magnetic properties of amorphous ferrimagnetic thin films for spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...